Sparse Variational Bayesian SAGE Algorithm With Application to the Estimation of Multipath Wireless Channels

In this paper, we develop a sparse variational Bayesian (VB) extension of the space-alternating generalized expectation-maximization (SAGE) algorithm for the high resolution estimation of the parameters of relevant multipath components in the response of frequency and spatially selective wireless ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2011-08, Vol.59 (8), p.3609-3623
Hauptverfasser: Shutin, D., Fleury, B. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3623
container_issue 8
container_start_page 3609
container_title IEEE transactions on signal processing
container_volume 59
creator Shutin, D.
Fleury, B. H.
description In this paper, we develop a sparse variational Bayesian (VB) extension of the space-alternating generalized expectation-maximization (SAGE) algorithm for the high resolution estimation of the parameters of relevant multipath components in the response of frequency and spatially selective wireless channels. The application context of the algorithm considered in this contribution is parameter estimation from channel sounding measurements for radio channel modeling purpose. The new sparse VB-SAGE algorithm extends the classical SAGE algorithm in two respects: i) by monotonically minimizing the variational free energy, distributions of the multipath component parameters can be obtained instead of parameter point estimates and ii) the estimation of the number of relevant multipath components and the estimation of the component parameters are implemented jointly. The sparsity is achieved by defining parametric sparsity priors for the weights of the multipath components. We revisit the Gaussian sparsity priors within the sparse VB-SAGE framework and extend the results by considering Laplace priors. The structure of the VB-SAGE algorithm allows for an analytical stability analysis of the update expression for the sparsity parameters. This analysis leads to fast, computationally simple, yet powerful, adaptive selection criteria applied to the single multipath component considered at each iteration. The selection criteria are adjusted on a per-component-SNR basis to better account for model mismatches, e.g., diffuse scattering, calibration and discretization errors, allowing for a robust extraction of the relevant multipath components. The performance of the sparse VB-SAGE algorithm and its advantages over conventional channel estimation methods are demonstrated in synthetic single-input-multiple-output (SIMO) time-invariant channels. The algorithm is also applied to real measurement data in a multiple-input-multiple-output (MIMO) time-invariant context.
doi_str_mv 10.1109/TSP.2011.2140106
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_24392164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5744133</ieee_id><sourcerecordid>2397983781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-f5db5868c6c6a07ada7c8f64fadf12f09854e2850dc299c37803481d05da6ccd3</originalsourceid><addsrcrecordid>eNpdkEtrGzEQgJfSQtO090IvolB6Wmf0WD2OrnHTQEICTpvexFQr1Qry7kZaH_Lvq9Qmh1xmhplvBuZrmo8UFpSCObvd3CwYULpgVAAF-ao5oUbQFoSSr2sNHW87rX6_bd6Vcg9AhTDypEmbCXPx5BfmiHMcB0zkGz76EnEgm-X5mizT3zHHebsjdzWS5TSl6P6jZB7JvPVkXea4O3TGQK72aY4TVvQuZp98KWS1xWHwqbxv3gRMxX845tPm5_f17epHe3l9frFaXraOGzG3oev_dFpqJ51EUNijcjpIEbAPlAUwuhOe6Q56x4xxXGngQtMeuh6lcz0_bb4e7k55fNj7MttdLM6nhIMf98UaagxIA6qSn1-Q9-M-VwnFaiUZNVqxCsEBcnksJftgp1wfzo-Wgn2Sb6t8-yTfHuXXlS_Hu1gcppBxcLE87zHBDaNSVO7TgYve--dxp4SgnPN_CeGNlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>876219872</pqid></control><display><type>article</type><title>Sparse Variational Bayesian SAGE Algorithm With Application to the Estimation of Multipath Wireless Channels</title><source>IEEE Electronic Library (IEL)</source><creator>Shutin, D. ; Fleury, B. H.</creator><creatorcontrib>Shutin, D. ; Fleury, B. H.</creatorcontrib><description>In this paper, we develop a sparse variational Bayesian (VB) extension of the space-alternating generalized expectation-maximization (SAGE) algorithm for the high resolution estimation of the parameters of relevant multipath components in the response of frequency and spatially selective wireless channels. The application context of the algorithm considered in this contribution is parameter estimation from channel sounding measurements for radio channel modeling purpose. The new sparse VB-SAGE algorithm extends the classical SAGE algorithm in two respects: i) by monotonically minimizing the variational free energy, distributions of the multipath component parameters can be obtained instead of parameter point estimates and ii) the estimation of the number of relevant multipath components and the estimation of the component parameters are implemented jointly. The sparsity is achieved by defining parametric sparsity priors for the weights of the multipath components. We revisit the Gaussian sparsity priors within the sparse VB-SAGE framework and extend the results by considering Laplace priors. The structure of the VB-SAGE algorithm allows for an analytical stability analysis of the update expression for the sparsity parameters. This analysis leads to fast, computationally simple, yet powerful, adaptive selection criteria applied to the single multipath component considered at each iteration. The selection criteria are adjusted on a per-component-SNR basis to better account for model mismatches, e.g., diffuse scattering, calibration and discretization errors, allowing for a robust extraction of the relevant multipath components. The performance of the sparse VB-SAGE algorithm and its advantages over conventional channel estimation methods are demonstrated in synthetic single-input-multiple-output (SIMO) time-invariant channels. The algorithm is also applied to real measurement data in a multiple-input-multiple-output (MIMO) time-invariant context.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2011.2140106</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Bayesian analysis ; Bayesian methods ; Channel estimation ; Channels ; Criteria ; Detection, estimation, filtering, equalization, prediction ; Discretization ; Estimation ; Exact sciences and technology ; Expectation-maximization algorithm ; Extraction ; Information, signal and communications theory ; Mathematical models ; MIMO ; multipath channels ; Numerical models ; Parameter estimation ; SAGE algorithm ; Signal and communications theory ; Signal, noise ; Sparsity ; Stability analysis ; Studies ; Telecommunications and information theory ; variational Bayesian methods ; Wireless communication</subject><ispartof>IEEE transactions on signal processing, 2011-08, Vol.59 (8), p.3609-3623</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-f5db5868c6c6a07ada7c8f64fadf12f09854e2850dc299c37803481d05da6ccd3</citedby><cites>FETCH-LOGICAL-c394t-f5db5868c6c6a07ada7c8f64fadf12f09854e2850dc299c37803481d05da6ccd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5744133$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5744133$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24392164$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shutin, D.</creatorcontrib><creatorcontrib>Fleury, B. H.</creatorcontrib><title>Sparse Variational Bayesian SAGE Algorithm With Application to the Estimation of Multipath Wireless Channels</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this paper, we develop a sparse variational Bayesian (VB) extension of the space-alternating generalized expectation-maximization (SAGE) algorithm for the high resolution estimation of the parameters of relevant multipath components in the response of frequency and spatially selective wireless channels. The application context of the algorithm considered in this contribution is parameter estimation from channel sounding measurements for radio channel modeling purpose. The new sparse VB-SAGE algorithm extends the classical SAGE algorithm in two respects: i) by monotonically minimizing the variational free energy, distributions of the multipath component parameters can be obtained instead of parameter point estimates and ii) the estimation of the number of relevant multipath components and the estimation of the component parameters are implemented jointly. The sparsity is achieved by defining parametric sparsity priors for the weights of the multipath components. We revisit the Gaussian sparsity priors within the sparse VB-SAGE framework and extend the results by considering Laplace priors. The structure of the VB-SAGE algorithm allows for an analytical stability analysis of the update expression for the sparsity parameters. This analysis leads to fast, computationally simple, yet powerful, adaptive selection criteria applied to the single multipath component considered at each iteration. The selection criteria are adjusted on a per-component-SNR basis to better account for model mismatches, e.g., diffuse scattering, calibration and discretization errors, allowing for a robust extraction of the relevant multipath components. The performance of the sparse VB-SAGE algorithm and its advantages over conventional channel estimation methods are demonstrated in synthetic single-input-multiple-output (SIMO) time-invariant channels. The algorithm is also applied to real measurement data in a multiple-input-multiple-output (MIMO) time-invariant context.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Channel estimation</subject><subject>Channels</subject><subject>Criteria</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Discretization</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Expectation-maximization algorithm</subject><subject>Extraction</subject><subject>Information, signal and communications theory</subject><subject>Mathematical models</subject><subject>MIMO</subject><subject>multipath channels</subject><subject>Numerical models</subject><subject>Parameter estimation</subject><subject>SAGE algorithm</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Sparsity</subject><subject>Stability analysis</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>variational Bayesian methods</subject><subject>Wireless communication</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtrGzEQgJfSQtO090IvolB6Wmf0WD2OrnHTQEICTpvexFQr1Qry7kZaH_Lvq9Qmh1xmhplvBuZrmo8UFpSCObvd3CwYULpgVAAF-ao5oUbQFoSSr2sNHW87rX6_bd6Vcg9AhTDypEmbCXPx5BfmiHMcB0zkGz76EnEgm-X5mizT3zHHebsjdzWS5TSl6P6jZB7JvPVkXea4O3TGQK72aY4TVvQuZp98KWS1xWHwqbxv3gRMxX845tPm5_f17epHe3l9frFaXraOGzG3oev_dFpqJ51EUNijcjpIEbAPlAUwuhOe6Q56x4xxXGngQtMeuh6lcz0_bb4e7k55fNj7MttdLM6nhIMf98UaagxIA6qSn1-Q9-M-VwnFaiUZNVqxCsEBcnksJftgp1wfzo-Wgn2Sb6t8-yTfHuXXlS_Hu1gcppBxcLE87zHBDaNSVO7TgYve--dxp4SgnPN_CeGNlw</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Shutin, D.</creator><creator>Fleury, B. H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110801</creationdate><title>Sparse Variational Bayesian SAGE Algorithm With Application to the Estimation of Multipath Wireless Channels</title><author>Shutin, D. ; Fleury, B. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-f5db5868c6c6a07ada7c8f64fadf12f09854e2850dc299c37803481d05da6ccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Channel estimation</topic><topic>Channels</topic><topic>Criteria</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Discretization</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Expectation-maximization algorithm</topic><topic>Extraction</topic><topic>Information, signal and communications theory</topic><topic>Mathematical models</topic><topic>MIMO</topic><topic>multipath channels</topic><topic>Numerical models</topic><topic>Parameter estimation</topic><topic>SAGE algorithm</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Sparsity</topic><topic>Stability analysis</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>variational Bayesian methods</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shutin, D.</creatorcontrib><creatorcontrib>Fleury, B. H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shutin, D.</au><au>Fleury, B. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Variational Bayesian SAGE Algorithm With Application to the Estimation of Multipath Wireless Channels</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>59</volume><issue>8</issue><spage>3609</spage><epage>3623</epage><pages>3609-3623</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this paper, we develop a sparse variational Bayesian (VB) extension of the space-alternating generalized expectation-maximization (SAGE) algorithm for the high resolution estimation of the parameters of relevant multipath components in the response of frequency and spatially selective wireless channels. The application context of the algorithm considered in this contribution is parameter estimation from channel sounding measurements for radio channel modeling purpose. The new sparse VB-SAGE algorithm extends the classical SAGE algorithm in two respects: i) by monotonically minimizing the variational free energy, distributions of the multipath component parameters can be obtained instead of parameter point estimates and ii) the estimation of the number of relevant multipath components and the estimation of the component parameters are implemented jointly. The sparsity is achieved by defining parametric sparsity priors for the weights of the multipath components. We revisit the Gaussian sparsity priors within the sparse VB-SAGE framework and extend the results by considering Laplace priors. The structure of the VB-SAGE algorithm allows for an analytical stability analysis of the update expression for the sparsity parameters. This analysis leads to fast, computationally simple, yet powerful, adaptive selection criteria applied to the single multipath component considered at each iteration. The selection criteria are adjusted on a per-component-SNR basis to better account for model mismatches, e.g., diffuse scattering, calibration and discretization errors, allowing for a robust extraction of the relevant multipath components. The performance of the sparse VB-SAGE algorithm and its advantages over conventional channel estimation methods are demonstrated in synthetic single-input-multiple-output (SIMO) time-invariant channels. The algorithm is also applied to real measurement data in a multiple-input-multiple-output (MIMO) time-invariant context.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2011.2140106</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2011-08, Vol.59 (8), p.3609-3623
issn 1053-587X
1941-0476
language eng
recordid cdi_pascalfrancis_primary_24392164
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Applied sciences
Bayesian analysis
Bayesian methods
Channel estimation
Channels
Criteria
Detection, estimation, filtering, equalization, prediction
Discretization
Estimation
Exact sciences and technology
Expectation-maximization algorithm
Extraction
Information, signal and communications theory
Mathematical models
MIMO
multipath channels
Numerical models
Parameter estimation
SAGE algorithm
Signal and communications theory
Signal, noise
Sparsity
Stability analysis
Studies
Telecommunications and information theory
variational Bayesian methods
Wireless communication
title Sparse Variational Bayesian SAGE Algorithm With Application to the Estimation of Multipath Wireless Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T15%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Variational%20Bayesian%20SAGE%20Algorithm%20With%20Application%20to%20the%20Estimation%20of%20Multipath%20Wireless%20Channels&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Shutin,%20D.&rft.date=2011-08-01&rft.volume=59&rft.issue=8&rft.spage=3609&rft.epage=3623&rft.pages=3609-3623&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2011.2140106&rft_dat=%3Cproquest_RIE%3E2397983781%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=876219872&rft_id=info:pmid/&rft_ieee_id=5744133&rfr_iscdi=true