Directional approach to spatial structure of solutions to the Navier–Stokes equations in the plane

We investigate a steady flow of incompressible fluid in the plane. The motion is governed by the Navier-Stokes equations with prescribed velocity u sub([infinity]) at infinity. The main result shows the existence of unique solutions for arbitrary force, provided sufficient largeness of u sub([infini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2011-06, Vol.24 (6), p.1861-1882, Article 1861
Hauptverfasser: Konieczny, P, Mucha, P B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1882
container_issue 6
container_start_page 1861
container_title Nonlinearity
container_volume 24
creator Konieczny, P
Mucha, P B
description We investigate a steady flow of incompressible fluid in the plane. The motion is governed by the Navier-Stokes equations with prescribed velocity u sub([infinity]) at infinity. The main result shows the existence of unique solutions for arbitrary force, provided sufficient largeness of u sub([infinity]) Furthermore a spatial structure of the solution is obtained in comparison with the Oseen flow. A key element of our new approach is based on a setting which treats the direction of the flow as the time direction. The analysis is done in the framework of the Fourier transform taken in one (perpendicular) direction and a special choice of function spaces which take into account the inhomogeneous character of the symbol of the Oseen system. From that point of view our technique can be used as an effective tool in examining spatial asymptotics of solutions to other systems modelled by elliptic equations.
doi_str_mv 10.1088/0951-7715/24/6/010
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_24235034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730056859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-853bce169715ce25391257dca5ec0eed8cc1ab0a173dceeed6c9ad474af58dbe3</originalsourceid><addsrcrecordid>eNqNkM1KHUEQhRuJ4M01L-BqNoJZTG7_zs9SNBpBzEKzburW1GDreHvs7hGyyzvkDfMk6fGKC4WQVUHxnVOnDmMHgn8RvGlWvDWirGthVlKvqhUXfIcthKpEWRmtP7DFK7DHPsZ4x7kQjVQL1p26QJic38BQwDgGD3hbJF_EEZLLu5jChGkKVPi-iH6YZjbORLql4gqeHIU_v35fJ39PsaDHCbaA2zwD4wAb2me7PQyRPr3MJftx9vXm5Ft5-f384uT4skQtq1Q2Rq2RRNXmmEjSqFZIU3cIhpATdQ2igDUHUasOKS8qbKHTtYbeNN2a1JIdbX3zG48TxWQfXEQa5gx-ijYLOTdVY9qMyi2KwccYqLdjcA8QflrB7VypnRuzc2NWalvZXGkWHb74Q0QY-gAbdPFVKbVUhiudueaNObr03EsK4IZ_nyi3UufH_4v0-T3_nrNj16u_gFSmDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730056859</pqid></control><display><type>article</type><title>Directional approach to spatial structure of solutions to the Navier–Stokes equations in the plane</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Konieczny, P ; Mucha, P B</creator><creatorcontrib>Konieczny, P ; Mucha, P B</creatorcontrib><description>We investigate a steady flow of incompressible fluid in the plane. The motion is governed by the Navier-Stokes equations with prescribed velocity u sub([infinity]) at infinity. The main result shows the existence of unique solutions for arbitrary force, provided sufficient largeness of u sub([infinity]) Furthermore a spatial structure of the solution is obtained in comparison with the Oseen flow. A key element of our new approach is based on a setting which treats the direction of the flow as the time direction. The analysis is done in the framework of the Fourier transform taken in one (perpendicular) direction and a special choice of function spaces which take into account the inhomogeneous character of the symbol of the Oseen system. From that point of view our technique can be used as an effective tool in examining spatial asymptotics of solutions to other systems modelled by elliptic equations.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/0951-7715/24/6/010</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Asymptotic properties ; Exact sciences and technology ; Fourier transforms ; Global analysis, analysis on manifolds ; Infinity ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Mathematics ; Navier-Stokes equations ; Other topics in mathematical methods in physics ; Partial differential equations ; Physics ; Planes ; Sciences and techniques of general use ; Special functions ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Nonlinearity, 2011-06, Vol.24 (6), p.1861-1882, Article 1861</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-853bce169715ce25391257dca5ec0eed8cc1ab0a173dceeed6c9ad474af58dbe3</citedby><cites>FETCH-LOGICAL-c426t-853bce169715ce25391257dca5ec0eed8cc1ab0a173dceeed6c9ad474af58dbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0951-7715/24/6/010/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24235034$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Konieczny, P</creatorcontrib><creatorcontrib>Mucha, P B</creatorcontrib><title>Directional approach to spatial structure of solutions to the Navier–Stokes equations in the plane</title><title>Nonlinearity</title><description>We investigate a steady flow of incompressible fluid in the plane. The motion is governed by the Navier-Stokes equations with prescribed velocity u sub([infinity]) at infinity. The main result shows the existence of unique solutions for arbitrary force, provided sufficient largeness of u sub([infinity]) Furthermore a spatial structure of the solution is obtained in comparison with the Oseen flow. A key element of our new approach is based on a setting which treats the direction of the flow as the time direction. The analysis is done in the framework of the Fourier transform taken in one (perpendicular) direction and a special choice of function spaces which take into account the inhomogeneous character of the symbol of the Oseen system. From that point of view our technique can be used as an effective tool in examining spatial asymptotics of solutions to other systems modelled by elliptic equations.</description><subject>Asymptotic properties</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>Global analysis, analysis on manifolds</subject><subject>Infinity</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Navier-Stokes equations</subject><subject>Other topics in mathematical methods in physics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Planes</subject><subject>Sciences and techniques of general use</subject><subject>Special functions</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KHUEQhRuJ4M01L-BqNoJZTG7_zs9SNBpBzEKzburW1GDreHvs7hGyyzvkDfMk6fGKC4WQVUHxnVOnDmMHgn8RvGlWvDWirGthVlKvqhUXfIcthKpEWRmtP7DFK7DHPsZ4x7kQjVQL1p26QJic38BQwDgGD3hbJF_EEZLLu5jChGkKVPi-iH6YZjbORLql4gqeHIU_v35fJ39PsaDHCbaA2zwD4wAb2me7PQyRPr3MJftx9vXm5Ft5-f384uT4skQtq1Q2Rq2RRNXmmEjSqFZIU3cIhpATdQ2igDUHUasOKS8qbKHTtYbeNN2a1JIdbX3zG48TxWQfXEQa5gx-ijYLOTdVY9qMyi2KwccYqLdjcA8QflrB7VypnRuzc2NWalvZXGkWHb74Q0QY-gAbdPFVKbVUhiudueaNObr03EsK4IZ_nyi3UufH_4v0-T3_nrNj16u_gFSmDQ</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Konieczny, P</creator><creator>Mucha, P B</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20110601</creationdate><title>Directional approach to spatial structure of solutions to the Navier–Stokes equations in the plane</title><author>Konieczny, P ; Mucha, P B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-853bce169715ce25391257dca5ec0eed8cc1ab0a173dceeed6c9ad474af58dbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Asymptotic properties</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>Global analysis, analysis on manifolds</topic><topic>Infinity</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Navier-Stokes equations</topic><topic>Other topics in mathematical methods in physics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Planes</topic><topic>Sciences and techniques of general use</topic><topic>Special functions</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konieczny, P</creatorcontrib><creatorcontrib>Mucha, P B</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konieczny, P</au><au>Mucha, P B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directional approach to spatial structure of solutions to the Navier–Stokes equations in the plane</atitle><jtitle>Nonlinearity</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>24</volume><issue>6</issue><spage>1861</spage><epage>1882</epage><pages>1861-1882</pages><artnum>1861</artnum><issn>0951-7715</issn><eissn>1361-6544</eissn><abstract>We investigate a steady flow of incompressible fluid in the plane. The motion is governed by the Navier-Stokes equations with prescribed velocity u sub([infinity]) at infinity. The main result shows the existence of unique solutions for arbitrary force, provided sufficient largeness of u sub([infinity]) Furthermore a spatial structure of the solution is obtained in comparison with the Oseen flow. A key element of our new approach is based on a setting which treats the direction of the flow as the time direction. The analysis is done in the framework of the Fourier transform taken in one (perpendicular) direction and a special choice of function spaces which take into account the inhomogeneous character of the symbol of the Oseen system. From that point of view our technique can be used as an effective tool in examining spatial asymptotics of solutions to other systems modelled by elliptic equations.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0951-7715/24/6/010</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2011-06, Vol.24 (6), p.1861-1882, Article 1861
issn 0951-7715
1361-6544
language eng
recordid cdi_pascalfrancis_primary_24235034
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Asymptotic properties
Exact sciences and technology
Fourier transforms
Global analysis, analysis on manifolds
Infinity
Mathematical analysis
Mathematical methods in physics
Mathematical models
Mathematics
Navier-Stokes equations
Other topics in mathematical methods in physics
Partial differential equations
Physics
Planes
Sciences and techniques of general use
Special functions
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Directional approach to spatial structure of solutions to the Navier–Stokes equations in the plane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directional%20approach%20to%20spatial%20structure%20of%20solutions%20to%20the%20Navier%E2%80%93Stokes%20equations%20in%20the%20plane&rft.jtitle=Nonlinearity&rft.au=Konieczny,%20P&rft.date=2011-06-01&rft.volume=24&rft.issue=6&rft.spage=1861&rft.epage=1882&rft.pages=1861-1882&rft.artnum=1861&rft.issn=0951-7715&rft.eissn=1361-6544&rft_id=info:doi/10.1088/0951-7715/24/6/010&rft_dat=%3Cproquest_pasca%3E1730056859%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730056859&rft_id=info:pmid/&rfr_iscdi=true