Avalanche Gain and Energy Resolution of Semiconductor X-ray Detectors
Realistic Monte Carlo simulations for the avalanche gain of absorbed X-ray photons were carried out in a study of the relationship between avalanche gain and energy resolution for semiconductor X-ray avalanche photodiodes (APDs). The work explored how the distribution of gains, which directly affect...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2011-06, Vol.58 (6), p.1696-1701 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1701 |
---|---|
container_issue | 6 |
container_start_page | 1696 |
container_title | IEEE transactions on electron devices |
container_volume | 58 |
creator | Chee Hing Tan Gomes, R B David, J P R Barnett, A M Bassford, D J Lees, J E Jo Shien Ng |
description | Realistic Monte Carlo simulations for the avalanche gain of absorbed X-ray photons were carried out in a study of the relationship between avalanche gain and energy resolution for semiconductor X-ray avalanche photodiodes (APDs). The work explored how the distribution of gains, which directly affects the energy resolution, depends on the number of injected electron-hole pairs (and, hence, the photon energy), the relationship between ionization coefficients, and the mean gain itself. We showed that the conventional notion of APD gains significantly degrading energy resolution is incomplete. If the X-ray photons are absorbed outside the avalanche region, then high avalanche gains with little energy resolution penalty can be achieved using dissimilar ionization coefficients. However, absorption of X-ray photons within the avalanche region will always result in broad gain distribution (degrading energy resolution), unless electrons and holes have similar ionization coefficients. |
doi_str_mv | 10.1109/TED.2011.2121915 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_24222959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5739107</ieee_id><sourcerecordid>889426308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-eac931de0e290ad541682ef0030d459260088634bc0f6e23002f4ff323d6a1dc3</originalsourceid><addsrcrecordid>eNpdkEtrGzEQgEVJoY7be6GXpVByWndG0srS0cTOAwKBJoHehKodtRvWK1faDfjfR8Ymh5yGYb55fYx9RVgggvn5uFkvOCAuOHI02HxgM2yaZW2UVGdsBoC6NkKLT-w85-eSKin5jG1WL653g_9H1bXrhsoNbbUZKP3dV78ox34auzhUMVQPtO18HNrJjzFVv-vk9tWaRjqk-TP7GFyf6cspztnT1ebx8qa-u7--vVzd1V6iHmty3ghsCYgbcG0jUWlOAUBAKxvDFYDWSsg_HoIiLgB4kCEILlrlsPVizi6Oc3cp_p8oj3bbZU99-YDilK3WRnIlQBfy-zvyOU5pKMdZXZailEtVIDhCPsWcEwW7S93Wpb1FsAertli1B6v2ZLW0_DjNddm7PqTirstvfVxyzk1jCvftyHVE9FZulsIgLMUrv_x97A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>868214476</pqid></control><display><type>article</type><title>Avalanche Gain and Energy Resolution of Semiconductor X-ray Detectors</title><source>IEEE Electronic Library (IEL)</source><creator>Chee Hing Tan ; Gomes, R B ; David, J P R ; Barnett, A M ; Bassford, D J ; Lees, J E ; Jo Shien Ng</creator><creatorcontrib>Chee Hing Tan ; Gomes, R B ; David, J P R ; Barnett, A M ; Bassford, D J ; Lees, J E ; Jo Shien Ng</creatorcontrib><description>Realistic Monte Carlo simulations for the avalanche gain of absorbed X-ray photons were carried out in a study of the relationship between avalanche gain and energy resolution for semiconductor X-ray avalanche photodiodes (APDs). The work explored how the distribution of gains, which directly affects the energy resolution, depends on the number of injected electron-hole pairs (and, hence, the photon energy), the relationship between ionization coefficients, and the mean gain itself. We showed that the conventional notion of APD gains significantly degrading energy resolution is incomplete. If the X-ray photons are absorbed outside the avalanche region, then high avalanche gains with little energy resolution penalty can be achieved using dissimilar ionization coefficients. However, absorption of X-ray photons within the avalanche region will always result in broad gain distribution (degrading energy resolution), unless electrons and holes have similar ionization coefficients.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2011.2121915</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Absorption ; Applied sciences ; Avalanche gain ; Avalanche photodiodes ; avalanche photodiodes (APDs) ; Avalanches ; Computer simulation ; Electronics ; Energy resolution ; Exact sciences and technology ; Gain ; General equipment and techniques ; impact ionization ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Ionization coefficients ; Noise ; Optoelectronic devices ; Photonics ; Photons ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Silicon ; spectroscopy ; X- and γ-ray instruments and techniques ; X- and γ-ray sources, mirrors, gratings and detectors ; X-ray ; X-rays</subject><ispartof>IEEE transactions on electron devices, 2011-06, Vol.58 (6), p.1696-1701</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-eac931de0e290ad541682ef0030d459260088634bc0f6e23002f4ff323d6a1dc3</citedby><cites>FETCH-LOGICAL-c418t-eac931de0e290ad541682ef0030d459260088634bc0f6e23002f4ff323d6a1dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5739107$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5739107$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24222959$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chee Hing Tan</creatorcontrib><creatorcontrib>Gomes, R B</creatorcontrib><creatorcontrib>David, J P R</creatorcontrib><creatorcontrib>Barnett, A M</creatorcontrib><creatorcontrib>Bassford, D J</creatorcontrib><creatorcontrib>Lees, J E</creatorcontrib><creatorcontrib>Jo Shien Ng</creatorcontrib><title>Avalanche Gain and Energy Resolution of Semiconductor X-ray Detectors</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Realistic Monte Carlo simulations for the avalanche gain of absorbed X-ray photons were carried out in a study of the relationship between avalanche gain and energy resolution for semiconductor X-ray avalanche photodiodes (APDs). The work explored how the distribution of gains, which directly affects the energy resolution, depends on the number of injected electron-hole pairs (and, hence, the photon energy), the relationship between ionization coefficients, and the mean gain itself. We showed that the conventional notion of APD gains significantly degrading energy resolution is incomplete. If the X-ray photons are absorbed outside the avalanche region, then high avalanche gains with little energy resolution penalty can be achieved using dissimilar ionization coefficients. However, absorption of X-ray photons within the avalanche region will always result in broad gain distribution (degrading energy resolution), unless electrons and holes have similar ionization coefficients.</description><subject>Absorption</subject><subject>Applied sciences</subject><subject>Avalanche gain</subject><subject>Avalanche photodiodes</subject><subject>avalanche photodiodes (APDs)</subject><subject>Avalanches</subject><subject>Computer simulation</subject><subject>Electronics</subject><subject>Energy resolution</subject><subject>Exact sciences and technology</subject><subject>Gain</subject><subject>General equipment and techniques</subject><subject>impact ionization</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Ionization coefficients</subject><subject>Noise</subject><subject>Optoelectronic devices</subject><subject>Photonics</subject><subject>Photons</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Silicon</subject><subject>spectroscopy</subject><subject>X- and γ-ray instruments and techniques</subject><subject>X- and γ-ray sources, mirrors, gratings and detectors</subject><subject>X-ray</subject><subject>X-rays</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtrGzEQgEVJoY7be6GXpVByWndG0srS0cTOAwKBJoHehKodtRvWK1faDfjfR8Ymh5yGYb55fYx9RVgggvn5uFkvOCAuOHI02HxgM2yaZW2UVGdsBoC6NkKLT-w85-eSKin5jG1WL653g_9H1bXrhsoNbbUZKP3dV78ox34auzhUMVQPtO18HNrJjzFVv-vk9tWaRjqk-TP7GFyf6cspztnT1ebx8qa-u7--vVzd1V6iHmty3ghsCYgbcG0jUWlOAUBAKxvDFYDWSsg_HoIiLgB4kCEILlrlsPVizi6Oc3cp_p8oj3bbZU99-YDilK3WRnIlQBfy-zvyOU5pKMdZXZailEtVIDhCPsWcEwW7S93Wpb1FsAertli1B6v2ZLW0_DjNddm7PqTirstvfVxyzk1jCvftyHVE9FZulsIgLMUrv_x97A</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Chee Hing Tan</creator><creator>Gomes, R B</creator><creator>David, J P R</creator><creator>Barnett, A M</creator><creator>Bassford, D J</creator><creator>Lees, J E</creator><creator>Jo Shien Ng</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110601</creationdate><title>Avalanche Gain and Energy Resolution of Semiconductor X-ray Detectors</title><author>Chee Hing Tan ; Gomes, R B ; David, J P R ; Barnett, A M ; Bassford, D J ; Lees, J E ; Jo Shien Ng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-eac931de0e290ad541682ef0030d459260088634bc0f6e23002f4ff323d6a1dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Absorption</topic><topic>Applied sciences</topic><topic>Avalanche gain</topic><topic>Avalanche photodiodes</topic><topic>avalanche photodiodes (APDs)</topic><topic>Avalanches</topic><topic>Computer simulation</topic><topic>Electronics</topic><topic>Energy resolution</topic><topic>Exact sciences and technology</topic><topic>Gain</topic><topic>General equipment and techniques</topic><topic>impact ionization</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Ionization coefficients</topic><topic>Noise</topic><topic>Optoelectronic devices</topic><topic>Photonics</topic><topic>Photons</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Silicon</topic><topic>spectroscopy</topic><topic>X- and γ-ray instruments and techniques</topic><topic>X- and γ-ray sources, mirrors, gratings and detectors</topic><topic>X-ray</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chee Hing Tan</creatorcontrib><creatorcontrib>Gomes, R B</creatorcontrib><creatorcontrib>David, J P R</creatorcontrib><creatorcontrib>Barnett, A M</creatorcontrib><creatorcontrib>Bassford, D J</creatorcontrib><creatorcontrib>Lees, J E</creatorcontrib><creatorcontrib>Jo Shien Ng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chee Hing Tan</au><au>Gomes, R B</au><au>David, J P R</au><au>Barnett, A M</au><au>Bassford, D J</au><au>Lees, J E</au><au>Jo Shien Ng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Avalanche Gain and Energy Resolution of Semiconductor X-ray Detectors</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>58</volume><issue>6</issue><spage>1696</spage><epage>1701</epage><pages>1696-1701</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Realistic Monte Carlo simulations for the avalanche gain of absorbed X-ray photons were carried out in a study of the relationship between avalanche gain and energy resolution for semiconductor X-ray avalanche photodiodes (APDs). The work explored how the distribution of gains, which directly affects the energy resolution, depends on the number of injected electron-hole pairs (and, hence, the photon energy), the relationship between ionization coefficients, and the mean gain itself. We showed that the conventional notion of APD gains significantly degrading energy resolution is incomplete. If the X-ray photons are absorbed outside the avalanche region, then high avalanche gains with little energy resolution penalty can be achieved using dissimilar ionization coefficients. However, absorption of X-ray photons within the avalanche region will always result in broad gain distribution (degrading energy resolution), unless electrons and holes have similar ionization coefficients.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2011.2121915</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2011-06, Vol.58 (6), p.1696-1701 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_pascalfrancis_primary_24222959 |
source | IEEE Electronic Library (IEL) |
subjects | Absorption Applied sciences Avalanche gain Avalanche photodiodes avalanche photodiodes (APDs) Avalanches Computer simulation Electronics Energy resolution Exact sciences and technology Gain General equipment and techniques impact ionization Instruments, apparatus, components and techniques common to several branches of physics and astronomy Ionization coefficients Noise Optoelectronic devices Photonics Photons Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors Sensors (chemical, optical, electrical, movement, gas, etc.) remote sensing Silicon spectroscopy X- and γ-ray instruments and techniques X- and γ-ray sources, mirrors, gratings and detectors X-ray X-rays |
title | Avalanche Gain and Energy Resolution of Semiconductor X-ray Detectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Avalanche%20Gain%20and%20Energy%20Resolution%20of%20Semiconductor%20X-ray%20Detectors&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Chee%20Hing%20Tan&rft.date=2011-06-01&rft.volume=58&rft.issue=6&rft.spage=1696&rft.epage=1701&rft.pages=1696-1701&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2011.2121915&rft_dat=%3Cproquest_RIE%3E889426308%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=868214476&rft_id=info:pmid/&rft_ieee_id=5739107&rfr_iscdi=true |