Avalanche Gain and Energy Resolution of Semiconductor X-ray Detectors

Realistic Monte Carlo simulations for the avalanche gain of absorbed X-ray photons were carried out in a study of the relationship between avalanche gain and energy resolution for semiconductor X-ray avalanche photodiodes (APDs). The work explored how the distribution of gains, which directly affect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2011-06, Vol.58 (6), p.1696-1701
Hauptverfasser: Chee Hing Tan, Gomes, R B, David, J P R, Barnett, A M, Bassford, D J, Lees, J E, Jo Shien Ng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1701
container_issue 6
container_start_page 1696
container_title IEEE transactions on electron devices
container_volume 58
creator Chee Hing Tan
Gomes, R B
David, J P R
Barnett, A M
Bassford, D J
Lees, J E
Jo Shien Ng
description Realistic Monte Carlo simulations for the avalanche gain of absorbed X-ray photons were carried out in a study of the relationship between avalanche gain and energy resolution for semiconductor X-ray avalanche photodiodes (APDs). The work explored how the distribution of gains, which directly affects the energy resolution, depends on the number of injected electron-hole pairs (and, hence, the photon energy), the relationship between ionization coefficients, and the mean gain itself. We showed that the conventional notion of APD gains significantly degrading energy resolution is incomplete. If the X-ray photons are absorbed outside the avalanche region, then high avalanche gains with little energy resolution penalty can be achieved using dissimilar ionization coefficients. However, absorption of X-ray photons within the avalanche region will always result in broad gain distribution (degrading energy resolution), unless electrons and holes have similar ionization coefficients.
doi_str_mv 10.1109/TED.2011.2121915
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_24222959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5739107</ieee_id><sourcerecordid>889426308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-eac931de0e290ad541682ef0030d459260088634bc0f6e23002f4ff323d6a1dc3</originalsourceid><addsrcrecordid>eNpdkEtrGzEQgEVJoY7be6GXpVByWndG0srS0cTOAwKBJoHehKodtRvWK1faDfjfR8Ymh5yGYb55fYx9RVgggvn5uFkvOCAuOHI02HxgM2yaZW2UVGdsBoC6NkKLT-w85-eSKin5jG1WL653g_9H1bXrhsoNbbUZKP3dV78ox34auzhUMVQPtO18HNrJjzFVv-vk9tWaRjqk-TP7GFyf6cspztnT1ebx8qa-u7--vVzd1V6iHmty3ghsCYgbcG0jUWlOAUBAKxvDFYDWSsg_HoIiLgB4kCEILlrlsPVizi6Oc3cp_p8oj3bbZU99-YDilK3WRnIlQBfy-zvyOU5pKMdZXZailEtVIDhCPsWcEwW7S93Wpb1FsAertli1B6v2ZLW0_DjNddm7PqTirstvfVxyzk1jCvftyHVE9FZulsIgLMUrv_x97A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>868214476</pqid></control><display><type>article</type><title>Avalanche Gain and Energy Resolution of Semiconductor X-ray Detectors</title><source>IEEE Electronic Library (IEL)</source><creator>Chee Hing Tan ; Gomes, R B ; David, J P R ; Barnett, A M ; Bassford, D J ; Lees, J E ; Jo Shien Ng</creator><creatorcontrib>Chee Hing Tan ; Gomes, R B ; David, J P R ; Barnett, A M ; Bassford, D J ; Lees, J E ; Jo Shien Ng</creatorcontrib><description>Realistic Monte Carlo simulations for the avalanche gain of absorbed X-ray photons were carried out in a study of the relationship between avalanche gain and energy resolution for semiconductor X-ray avalanche photodiodes (APDs). The work explored how the distribution of gains, which directly affects the energy resolution, depends on the number of injected electron-hole pairs (and, hence, the photon energy), the relationship between ionization coefficients, and the mean gain itself. We showed that the conventional notion of APD gains significantly degrading energy resolution is incomplete. If the X-ray photons are absorbed outside the avalanche region, then high avalanche gains with little energy resolution penalty can be achieved using dissimilar ionization coefficients. However, absorption of X-ray photons within the avalanche region will always result in broad gain distribution (degrading energy resolution), unless electrons and holes have similar ionization coefficients.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2011.2121915</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Absorption ; Applied sciences ; Avalanche gain ; Avalanche photodiodes ; avalanche photodiodes (APDs) ; Avalanches ; Computer simulation ; Electronics ; Energy resolution ; Exact sciences and technology ; Gain ; General equipment and techniques ; impact ionization ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Ionization coefficients ; Noise ; Optoelectronic devices ; Photonics ; Photons ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Silicon ; spectroscopy ; X- and γ-ray instruments and techniques ; X- and γ-ray sources, mirrors, gratings and detectors ; X-ray ; X-rays</subject><ispartof>IEEE transactions on electron devices, 2011-06, Vol.58 (6), p.1696-1701</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-eac931de0e290ad541682ef0030d459260088634bc0f6e23002f4ff323d6a1dc3</citedby><cites>FETCH-LOGICAL-c418t-eac931de0e290ad541682ef0030d459260088634bc0f6e23002f4ff323d6a1dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5739107$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5739107$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24222959$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chee Hing Tan</creatorcontrib><creatorcontrib>Gomes, R B</creatorcontrib><creatorcontrib>David, J P R</creatorcontrib><creatorcontrib>Barnett, A M</creatorcontrib><creatorcontrib>Bassford, D J</creatorcontrib><creatorcontrib>Lees, J E</creatorcontrib><creatorcontrib>Jo Shien Ng</creatorcontrib><title>Avalanche Gain and Energy Resolution of Semiconductor X-ray Detectors</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Realistic Monte Carlo simulations for the avalanche gain of absorbed X-ray photons were carried out in a study of the relationship between avalanche gain and energy resolution for semiconductor X-ray avalanche photodiodes (APDs). The work explored how the distribution of gains, which directly affects the energy resolution, depends on the number of injected electron-hole pairs (and, hence, the photon energy), the relationship between ionization coefficients, and the mean gain itself. We showed that the conventional notion of APD gains significantly degrading energy resolution is incomplete. If the X-ray photons are absorbed outside the avalanche region, then high avalanche gains with little energy resolution penalty can be achieved using dissimilar ionization coefficients. However, absorption of X-ray photons within the avalanche region will always result in broad gain distribution (degrading energy resolution), unless electrons and holes have similar ionization coefficients.</description><subject>Absorption</subject><subject>Applied sciences</subject><subject>Avalanche gain</subject><subject>Avalanche photodiodes</subject><subject>avalanche photodiodes (APDs)</subject><subject>Avalanches</subject><subject>Computer simulation</subject><subject>Electronics</subject><subject>Energy resolution</subject><subject>Exact sciences and technology</subject><subject>Gain</subject><subject>General equipment and techniques</subject><subject>impact ionization</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Ionization coefficients</subject><subject>Noise</subject><subject>Optoelectronic devices</subject><subject>Photonics</subject><subject>Photons</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Silicon</subject><subject>spectroscopy</subject><subject>X- and γ-ray instruments and techniques</subject><subject>X- and γ-ray sources, mirrors, gratings and detectors</subject><subject>X-ray</subject><subject>X-rays</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtrGzEQgEVJoY7be6GXpVByWndG0srS0cTOAwKBJoHehKodtRvWK1faDfjfR8Ymh5yGYb55fYx9RVgggvn5uFkvOCAuOHI02HxgM2yaZW2UVGdsBoC6NkKLT-w85-eSKin5jG1WL653g_9H1bXrhsoNbbUZKP3dV78ox34auzhUMVQPtO18HNrJjzFVv-vk9tWaRjqk-TP7GFyf6cspztnT1ebx8qa-u7--vVzd1V6iHmty3ghsCYgbcG0jUWlOAUBAKxvDFYDWSsg_HoIiLgB4kCEILlrlsPVizi6Oc3cp_p8oj3bbZU99-YDilK3WRnIlQBfy-zvyOU5pKMdZXZailEtVIDhCPsWcEwW7S93Wpb1FsAertli1B6v2ZLW0_DjNddm7PqTirstvfVxyzk1jCvftyHVE9FZulsIgLMUrv_x97A</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Chee Hing Tan</creator><creator>Gomes, R B</creator><creator>David, J P R</creator><creator>Barnett, A M</creator><creator>Bassford, D J</creator><creator>Lees, J E</creator><creator>Jo Shien Ng</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110601</creationdate><title>Avalanche Gain and Energy Resolution of Semiconductor X-ray Detectors</title><author>Chee Hing Tan ; Gomes, R B ; David, J P R ; Barnett, A M ; Bassford, D J ; Lees, J E ; Jo Shien Ng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-eac931de0e290ad541682ef0030d459260088634bc0f6e23002f4ff323d6a1dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Absorption</topic><topic>Applied sciences</topic><topic>Avalanche gain</topic><topic>Avalanche photodiodes</topic><topic>avalanche photodiodes (APDs)</topic><topic>Avalanches</topic><topic>Computer simulation</topic><topic>Electronics</topic><topic>Energy resolution</topic><topic>Exact sciences and technology</topic><topic>Gain</topic><topic>General equipment and techniques</topic><topic>impact ionization</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Ionization coefficients</topic><topic>Noise</topic><topic>Optoelectronic devices</topic><topic>Photonics</topic><topic>Photons</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Silicon</topic><topic>spectroscopy</topic><topic>X- and γ-ray instruments and techniques</topic><topic>X- and γ-ray sources, mirrors, gratings and detectors</topic><topic>X-ray</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chee Hing Tan</creatorcontrib><creatorcontrib>Gomes, R B</creatorcontrib><creatorcontrib>David, J P R</creatorcontrib><creatorcontrib>Barnett, A M</creatorcontrib><creatorcontrib>Bassford, D J</creatorcontrib><creatorcontrib>Lees, J E</creatorcontrib><creatorcontrib>Jo Shien Ng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chee Hing Tan</au><au>Gomes, R B</au><au>David, J P R</au><au>Barnett, A M</au><au>Bassford, D J</au><au>Lees, J E</au><au>Jo Shien Ng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Avalanche Gain and Energy Resolution of Semiconductor X-ray Detectors</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>58</volume><issue>6</issue><spage>1696</spage><epage>1701</epage><pages>1696-1701</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Realistic Monte Carlo simulations for the avalanche gain of absorbed X-ray photons were carried out in a study of the relationship between avalanche gain and energy resolution for semiconductor X-ray avalanche photodiodes (APDs). The work explored how the distribution of gains, which directly affects the energy resolution, depends on the number of injected electron-hole pairs (and, hence, the photon energy), the relationship between ionization coefficients, and the mean gain itself. We showed that the conventional notion of APD gains significantly degrading energy resolution is incomplete. If the X-ray photons are absorbed outside the avalanche region, then high avalanche gains with little energy resolution penalty can be achieved using dissimilar ionization coefficients. However, absorption of X-ray photons within the avalanche region will always result in broad gain distribution (degrading energy resolution), unless electrons and holes have similar ionization coefficients.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2011.2121915</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2011-06, Vol.58 (6), p.1696-1701
issn 0018-9383
1557-9646
language eng
recordid cdi_pascalfrancis_primary_24222959
source IEEE Electronic Library (IEL)
subjects Absorption
Applied sciences
Avalanche gain
Avalanche photodiodes
avalanche photodiodes (APDs)
Avalanches
Computer simulation
Electronics
Energy resolution
Exact sciences and technology
Gain
General equipment and techniques
impact ionization
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Ionization coefficients
Noise
Optoelectronic devices
Photonics
Photons
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
Silicon
spectroscopy
X- and γ-ray instruments and techniques
X- and γ-ray sources, mirrors, gratings and detectors
X-ray
X-rays
title Avalanche Gain and Energy Resolution of Semiconductor X-ray Detectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Avalanche%20Gain%20and%20Energy%20Resolution%20of%20Semiconductor%20X-ray%20Detectors&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Chee%20Hing%20Tan&rft.date=2011-06-01&rft.volume=58&rft.issue=6&rft.spage=1696&rft.epage=1701&rft.pages=1696-1701&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2011.2121915&rft_dat=%3Cproquest_RIE%3E889426308%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=868214476&rft_id=info:pmid/&rft_ieee_id=5739107&rfr_iscdi=true