Robust H ∞ filtering for a class of discrete-time nonlinear systems
In this paper, a robust H ∞ filtering problem is considered for a class of discrete-time nonlinear systems. Based on the Lyapunov method, a design criterion of the robust H ∞ filter guarantee not only the stability but also the prespecified upper bound of H ∞ norm from the disturbance inputs to erro...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2011-06, Vol.217 (20), p.7991-7997 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7997 |
---|---|
container_issue | 20 |
container_start_page | 7991 |
container_title | Applied mathematics and computation |
container_volume | 217 |
creator | Lee, S.M. Ji, D.H. Kwon, O.M. Park, Ju H. |
description | In this paper, a robust
H
∞
filtering problem is considered for a class of discrete-time nonlinear systems. Based on the Lyapunov method, a design criterion of the robust
H
∞
filter guarantee not only the stability but also the prespecified upper bound of
H
∞
norm from the disturbance inputs to error state outputs. The design condition can be solved easily by efficient convex optimization algorithms. Numerical examples show the effectiveness of the proposed method. |
doi_str_mv | 10.1016/j.amc.2011.02.103 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_24209084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300311003262</els_id><sourcerecordid>S0096300311003262</sourcerecordid><originalsourceid>FETCH-LOGICAL-e152t-b2a47abea24361cca8c92fd5e8edb22992349bba7d1a06db346ca201121ae6703</originalsourceid><addsrcrecordid>eNotUMtKw0AUHUTBWv0Ad7NxmXjn0UmCKym1FQqC6Hq4mdzIlDzKzCj0D_wKP84vMaWuDhwO58XYrYBcgDD3uxx7l0sQIgc5UeqMzURZqGxhdHXOZgCVyRSAumRXMe4AoDBCz9jqdaw_Y-Ib_vv9w1vfJQp--ODtGDhy12GMfGx546MLlChLvic-jEPnB8LA4yEm6uM1u2ixi3Tzj3P2_rR6W26y7cv6efm4zUgsZMpqibrAmlBqZYRzWLpKts2CSmpqKatKKl3VNRaNQDBNrbRxeNwkBZIpQM3Z3cl3j9Fh1wYcnI92H3yP4WClllBBqSfdw0lHU5kvT8FG52lw1PhALtlm9FaAPT5nd3Z6zh5TLMiJUuoPcn5jgw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust H ∞ filtering for a class of discrete-time nonlinear systems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lee, S.M. ; Ji, D.H. ; Kwon, O.M. ; Park, Ju H.</creator><creatorcontrib>Lee, S.M. ; Ji, D.H. ; Kwon, O.M. ; Park, Ju H.</creatorcontrib><description>In this paper, a robust
H
∞
filtering problem is considered for a class of discrete-time nonlinear systems. Based on the Lyapunov method, a design criterion of the robust
H
∞
filter guarantee not only the stability but also the prespecified upper bound of
H
∞
norm from the disturbance inputs to error state outputs. The design condition can be solved easily by efficient convex optimization algorithms. Numerical examples show the effectiveness of the proposed method.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2011.02.103</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Calculus of variations and optimal control ; Combinatorics ; Combinatorics. Ordered structures ; Designs and configurations ; Disturbance ; Exact sciences and technology ; LMIs ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in mathematical programming, optimization and calculus of variations ; Numerical methods in optimization and calculus of variations ; Robust filtering ; Sciences and techniques of general use ; Sector bounded nonlinear systems</subject><ispartof>Applied mathematics and computation, 2011-06, Vol.217 (20), p.7991-7997</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2011.02.103$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24209084$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, S.M.</creatorcontrib><creatorcontrib>Ji, D.H.</creatorcontrib><creatorcontrib>Kwon, O.M.</creatorcontrib><creatorcontrib>Park, Ju H.</creatorcontrib><title>Robust H ∞ filtering for a class of discrete-time nonlinear systems</title><title>Applied mathematics and computation</title><description>In this paper, a robust
H
∞
filtering problem is considered for a class of discrete-time nonlinear systems. Based on the Lyapunov method, a design criterion of the robust
H
∞
filter guarantee not only the stability but also the prespecified upper bound of
H
∞
norm from the disturbance inputs to error state outputs. The design condition can be solved easily by efficient convex optimization algorithms. Numerical examples show the effectiveness of the proposed method.</description><subject>Calculus of variations and optimal control</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Designs and configurations</subject><subject>Disturbance</subject><subject>Exact sciences and technology</subject><subject>LMIs</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in mathematical programming, optimization and calculus of variations</subject><subject>Numerical methods in optimization and calculus of variations</subject><subject>Robust filtering</subject><subject>Sciences and techniques of general use</subject><subject>Sector bounded nonlinear systems</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNotUMtKw0AUHUTBWv0Ad7NxmXjn0UmCKym1FQqC6Hq4mdzIlDzKzCj0D_wKP84vMaWuDhwO58XYrYBcgDD3uxx7l0sQIgc5UeqMzURZqGxhdHXOZgCVyRSAumRXMe4AoDBCz9jqdaw_Y-Ib_vv9w1vfJQp--ODtGDhy12GMfGx546MLlChLvic-jEPnB8LA4yEm6uM1u2ixi3Tzj3P2_rR6W26y7cv6efm4zUgsZMpqibrAmlBqZYRzWLpKts2CSmpqKatKKl3VNRaNQDBNrbRxeNwkBZIpQM3Z3cl3j9Fh1wYcnI92H3yP4WClllBBqSfdw0lHU5kvT8FG52lw1PhALtlm9FaAPT5nd3Z6zh5TLMiJUuoPcn5jgw</recordid><startdate>20110615</startdate><enddate>20110615</enddate><creator>Lee, S.M.</creator><creator>Ji, D.H.</creator><creator>Kwon, O.M.</creator><creator>Park, Ju H.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>20110615</creationdate><title>Robust H ∞ filtering for a class of discrete-time nonlinear systems</title><author>Lee, S.M. ; Ji, D.H. ; Kwon, O.M. ; Park, Ju H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e152t-b2a47abea24361cca8c92fd5e8edb22992349bba7d1a06db346ca201121ae6703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Calculus of variations and optimal control</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Designs and configurations</topic><topic>Disturbance</topic><topic>Exact sciences and technology</topic><topic>LMIs</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in mathematical programming, optimization and calculus of variations</topic><topic>Numerical methods in optimization and calculus of variations</topic><topic>Robust filtering</topic><topic>Sciences and techniques of general use</topic><topic>Sector bounded nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, S.M.</creatorcontrib><creatorcontrib>Ji, D.H.</creatorcontrib><creatorcontrib>Kwon, O.M.</creatorcontrib><creatorcontrib>Park, Ju H.</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, S.M.</au><au>Ji, D.H.</au><au>Kwon, O.M.</au><au>Park, Ju H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust H ∞ filtering for a class of discrete-time nonlinear systems</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-06-15</date><risdate>2011</risdate><volume>217</volume><issue>20</issue><spage>7991</spage><epage>7997</epage><pages>7991-7997</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>In this paper, a robust
H
∞
filtering problem is considered for a class of discrete-time nonlinear systems. Based on the Lyapunov method, a design criterion of the robust
H
∞
filter guarantee not only the stability but also the prespecified upper bound of
H
∞
norm from the disturbance inputs to error state outputs. The design condition can be solved easily by efficient convex optimization algorithms. Numerical examples show the effectiveness of the proposed method.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2011.02.103</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2011-06, Vol.217 (20), p.7991-7997 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_pascalfrancis_primary_24209084 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Calculus of variations and optimal control Combinatorics Combinatorics. Ordered structures Designs and configurations Disturbance Exact sciences and technology LMIs Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical methods in mathematical programming, optimization and calculus of variations Numerical methods in optimization and calculus of variations Robust filtering Sciences and techniques of general use Sector bounded nonlinear systems |
title | Robust H ∞ filtering for a class of discrete-time nonlinear systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20H%20%E2%88%9E%20filtering%20for%20a%20class%20of%20discrete-time%20nonlinear%20systems&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Lee,%20S.M.&rft.date=2011-06-15&rft.volume=217&rft.issue=20&rft.spage=7991&rft.epage=7997&rft.pages=7991-7997&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2011.02.103&rft_dat=%3Celsevier_pasca%3ES0096300311003262%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0096300311003262&rfr_iscdi=true |