Robust H ∞ filtering for a class of discrete-time nonlinear systems

In this paper, a robust H ∞ filtering problem is considered for a class of discrete-time nonlinear systems. Based on the Lyapunov method, a design criterion of the robust H ∞ filter guarantee not only the stability but also the prespecified upper bound of H ∞ norm from the disturbance inputs to erro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2011-06, Vol.217 (20), p.7991-7997
Hauptverfasser: Lee, S.M., Ji, D.H., Kwon, O.M., Park, Ju H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7997
container_issue 20
container_start_page 7991
container_title Applied mathematics and computation
container_volume 217
creator Lee, S.M.
Ji, D.H.
Kwon, O.M.
Park, Ju H.
description In this paper, a robust H ∞ filtering problem is considered for a class of discrete-time nonlinear systems. Based on the Lyapunov method, a design criterion of the robust H ∞ filter guarantee not only the stability but also the prespecified upper bound of H ∞ norm from the disturbance inputs to error state outputs. The design condition can be solved easily by efficient convex optimization algorithms. Numerical examples show the effectiveness of the proposed method.
doi_str_mv 10.1016/j.amc.2011.02.103
format Article
fullrecord <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_24209084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300311003262</els_id><sourcerecordid>S0096300311003262</sourcerecordid><originalsourceid>FETCH-LOGICAL-e152t-b2a47abea24361cca8c92fd5e8edb22992349bba7d1a06db346ca201121ae6703</originalsourceid><addsrcrecordid>eNotUMtKw0AUHUTBWv0Ad7NxmXjn0UmCKym1FQqC6Hq4mdzIlDzKzCj0D_wKP84vMaWuDhwO58XYrYBcgDD3uxx7l0sQIgc5UeqMzURZqGxhdHXOZgCVyRSAumRXMe4AoDBCz9jqdaw_Y-Ib_vv9w1vfJQp--ODtGDhy12GMfGx546MLlChLvic-jEPnB8LA4yEm6uM1u2ixi3Tzj3P2_rR6W26y7cv6efm4zUgsZMpqibrAmlBqZYRzWLpKts2CSmpqKatKKl3VNRaNQDBNrbRxeNwkBZIpQM3Z3cl3j9Fh1wYcnI92H3yP4WClllBBqSfdw0lHU5kvT8FG52lw1PhALtlm9FaAPT5nd3Z6zh5TLMiJUuoPcn5jgw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust H ∞ filtering for a class of discrete-time nonlinear systems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lee, S.M. ; Ji, D.H. ; Kwon, O.M. ; Park, Ju H.</creator><creatorcontrib>Lee, S.M. ; Ji, D.H. ; Kwon, O.M. ; Park, Ju H.</creatorcontrib><description>In this paper, a robust H ∞ filtering problem is considered for a class of discrete-time nonlinear systems. Based on the Lyapunov method, a design criterion of the robust H ∞ filter guarantee not only the stability but also the prespecified upper bound of H ∞ norm from the disturbance inputs to error state outputs. The design condition can be solved easily by efficient convex optimization algorithms. Numerical examples show the effectiveness of the proposed method.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2011.02.103</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Calculus of variations and optimal control ; Combinatorics ; Combinatorics. Ordered structures ; Designs and configurations ; Disturbance ; Exact sciences and technology ; LMIs ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in mathematical programming, optimization and calculus of variations ; Numerical methods in optimization and calculus of variations ; Robust filtering ; Sciences and techniques of general use ; Sector bounded nonlinear systems</subject><ispartof>Applied mathematics and computation, 2011-06, Vol.217 (20), p.7991-7997</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2011.02.103$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24209084$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, S.M.</creatorcontrib><creatorcontrib>Ji, D.H.</creatorcontrib><creatorcontrib>Kwon, O.M.</creatorcontrib><creatorcontrib>Park, Ju H.</creatorcontrib><title>Robust H ∞ filtering for a class of discrete-time nonlinear systems</title><title>Applied mathematics and computation</title><description>In this paper, a robust H ∞ filtering problem is considered for a class of discrete-time nonlinear systems. Based on the Lyapunov method, a design criterion of the robust H ∞ filter guarantee not only the stability but also the prespecified upper bound of H ∞ norm from the disturbance inputs to error state outputs. The design condition can be solved easily by efficient convex optimization algorithms. Numerical examples show the effectiveness of the proposed method.</description><subject>Calculus of variations and optimal control</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Designs and configurations</subject><subject>Disturbance</subject><subject>Exact sciences and technology</subject><subject>LMIs</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in mathematical programming, optimization and calculus of variations</subject><subject>Numerical methods in optimization and calculus of variations</subject><subject>Robust filtering</subject><subject>Sciences and techniques of general use</subject><subject>Sector bounded nonlinear systems</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNotUMtKw0AUHUTBWv0Ad7NxmXjn0UmCKym1FQqC6Hq4mdzIlDzKzCj0D_wKP84vMaWuDhwO58XYrYBcgDD3uxx7l0sQIgc5UeqMzURZqGxhdHXOZgCVyRSAumRXMe4AoDBCz9jqdaw_Y-Ib_vv9w1vfJQp--ODtGDhy12GMfGx546MLlChLvic-jEPnB8LA4yEm6uM1u2ixi3Tzj3P2_rR6W26y7cv6efm4zUgsZMpqibrAmlBqZYRzWLpKts2CSmpqKatKKl3VNRaNQDBNrbRxeNwkBZIpQM3Z3cl3j9Fh1wYcnI92H3yP4WClllBBqSfdw0lHU5kvT8FG52lw1PhALtlm9FaAPT5nd3Z6zh5TLMiJUuoPcn5jgw</recordid><startdate>20110615</startdate><enddate>20110615</enddate><creator>Lee, S.M.</creator><creator>Ji, D.H.</creator><creator>Kwon, O.M.</creator><creator>Park, Ju H.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>20110615</creationdate><title>Robust H ∞ filtering for a class of discrete-time nonlinear systems</title><author>Lee, S.M. ; Ji, D.H. ; Kwon, O.M. ; Park, Ju H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e152t-b2a47abea24361cca8c92fd5e8edb22992349bba7d1a06db346ca201121ae6703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Calculus of variations and optimal control</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Designs and configurations</topic><topic>Disturbance</topic><topic>Exact sciences and technology</topic><topic>LMIs</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in mathematical programming, optimization and calculus of variations</topic><topic>Numerical methods in optimization and calculus of variations</topic><topic>Robust filtering</topic><topic>Sciences and techniques of general use</topic><topic>Sector bounded nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, S.M.</creatorcontrib><creatorcontrib>Ji, D.H.</creatorcontrib><creatorcontrib>Kwon, O.M.</creatorcontrib><creatorcontrib>Park, Ju H.</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, S.M.</au><au>Ji, D.H.</au><au>Kwon, O.M.</au><au>Park, Ju H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust H ∞ filtering for a class of discrete-time nonlinear systems</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-06-15</date><risdate>2011</risdate><volume>217</volume><issue>20</issue><spage>7991</spage><epage>7997</epage><pages>7991-7997</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>In this paper, a robust H ∞ filtering problem is considered for a class of discrete-time nonlinear systems. Based on the Lyapunov method, a design criterion of the robust H ∞ filter guarantee not only the stability but also the prespecified upper bound of H ∞ norm from the disturbance inputs to error state outputs. The design condition can be solved easily by efficient convex optimization algorithms. Numerical examples show the effectiveness of the proposed method.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2011.02.103</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2011-06, Vol.217 (20), p.7991-7997
issn 0096-3003
1873-5649
language eng
recordid cdi_pascalfrancis_primary_24209084
source ScienceDirect Journals (5 years ago - present)
subjects Calculus of variations and optimal control
Combinatorics
Combinatorics. Ordered structures
Designs and configurations
Disturbance
Exact sciences and technology
LMIs
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming, optimization and calculus of variations
Numerical methods in optimization and calculus of variations
Robust filtering
Sciences and techniques of general use
Sector bounded nonlinear systems
title Robust H ∞ filtering for a class of discrete-time nonlinear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20H%20%E2%88%9E%20filtering%20for%20a%20class%20of%20discrete-time%20nonlinear%20systems&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Lee,%20S.M.&rft.date=2011-06-15&rft.volume=217&rft.issue=20&rft.spage=7991&rft.epage=7997&rft.pages=7991-7997&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2011.02.103&rft_dat=%3Celsevier_pasca%3ES0096300311003262%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0096300311003262&rfr_iscdi=true