Compact Virtual-Source Current-Voltage Model for Top- and Back-Gated Graphene Field-Effect Transistors
This paper presents a compact model for the current-voltage characteristics of graphene field-effect transistors (GFETs), which is based on an extension of the "virtual-source" model previously proposed for Si MOSFETs and is valid for both saturation and nonsaturation regions of device ope...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2011-05, Vol.58 (5), p.1523-1533 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1533 |
---|---|
container_issue | 5 |
container_start_page | 1523 |
container_title | IEEE transactions on electron devices |
container_volume | 58 |
creator | Han Wang Hsu, A Jing Kong Antoniadis, D A Palacios, T |
description | This paper presents a compact model for the current-voltage characteristics of graphene field-effect transistors (GFETs), which is based on an extension of the "virtual-source" model previously proposed for Si MOSFETs and is valid for both saturation and nonsaturation regions of device operation. This GFET virtual-source model provides a simple and intuitive understanding of carrier transport in GFETs, allowing extraction of the virtual-source injection velocity v VS , which is a physical parameter with great technological significance for short-channel graphene transistors. The derived I - V characteristics account for the combined effects of the drain-source voltage VDS , the top-gate voltage VTGS , and the back-gate voltage VBGS . With only a small set of fitting parameters, the model shows excellent agreement with experimental data. It is also shown that the extracted virtual-source carrier injection velocity for graphene devices is much higher than in Si MOSFETs and state-of-the-art III-V heterostructure FETs with similar gate length, demonstrating the great potential of GFETs for high-frequency applications. Comparison with experimental data for chemical-vapor-deposited GFETs from our group and epitaxial GFETs in the literature confirms the validity and flexibility of the model for a wide range of existing GFET devices. |
doi_str_mv | 10.1109/TED.2011.2118759 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_24153706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5735198</ieee_id><sourcerecordid>2329121041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-a4167da51f81fea867d2639180d1942e3e05e3d05015dc976e4cf8f168ec4a773</originalsourceid><addsrcrecordid>eNpdkE2LFDEQhoMoOK7eBS9BEE8ZU53vo87OjsKKB8e9hpCuaK89nTbpPvjvzTLDHjwVRT31UvUQ8hr4FoC7D8f99bbjANsOwBrlnpANKGWY01I_JRvOwTInrHhOXtR631otZbchaZdPc4gLvRvKsoaRfc9riUh3ayk4Lewuj0v4ifRr7nGkKRd6zDOjYerppxB_s0NYsKeHEuZfOCG9GXDs2T4lbJHHEqY61CWX-pI8S2Gs-OpSr8iPm_1x95ndfjt82X28ZVFIu7AgQZs-KEgWEgbbmk4LB5b34GSHArlC0XPFQfXRGY0yJptAW4wyGCOuyPtz7lzynxXr4k9DjTiOYcK8Vt_M8M44JRr59j_yvn0-teO81aJdIxxvED9DseRaCyY_l-EUyl8P3D9o9027f9DuL9rbyrtLbqgxjKk5iEN93OskKGG4btybMzcg4uNYGaHAWfEPQ0CJuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863348390</pqid></control><display><type>article</type><title>Compact Virtual-Source Current-Voltage Model for Top- and Back-Gated Graphene Field-Effect Transistors</title><source>IEEE Electronic Library (IEL)</source><creator>Han Wang ; Hsu, A ; Jing Kong ; Antoniadis, D A ; Palacios, T</creator><creatorcontrib>Han Wang ; Hsu, A ; Jing Kong ; Antoniadis, D A ; Palacios, T</creatorcontrib><description>This paper presents a compact model for the current-voltage characteristics of graphene field-effect transistors (GFETs), which is based on an extension of the "virtual-source" model previously proposed for Si MOSFETs and is valid for both saturation and nonsaturation regions of device operation. This GFET virtual-source model provides a simple and intuitive understanding of carrier transport in GFETs, allowing extraction of the virtual-source injection velocity v VS , which is a physical parameter with great technological significance for short-channel graphene transistors. The derived I - V characteristics account for the combined effects of the drain-source voltage VDS , the top-gate voltage VTGS , and the back-gate voltage VBGS . With only a small set of fitting parameters, the model shows excellent agreement with experimental data. It is also shown that the extracted virtual-source carrier injection velocity for graphene devices is much higher than in Si MOSFETs and state-of-the-art III-V heterostructure FETs with similar gate length, demonstrating the great potential of GFETs for high-frequency applications. Comparison with experimental data for chemical-vapor-deposited GFETs from our group and epitaxial GFETs in the literature confirms the validity and flexibility of the model for a wide range of existing GFET devices.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2011.2118759</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Ambipolar transport ; Applied sciences ; Charge carrier processes ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Cross-disciplinary physics: materials science; rheology ; device model ; Devices ; Electric potential ; Electronics ; Exact sciences and technology ; Graphene ; graphene field-effect transistors (GFETs) ; Logic gates ; Materials science ; Mathematical models ; Methods of deposition of films and coatings; film growth and epitaxy ; Microelectronic fabrication (materials and surfaces technology) ; MOSFETs ; Physics ; Semiconductor devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductor process modeling ; Semiconductors ; Silicon ; Spontaneous emission ; Studies ; Transistors ; virtual-source carrier injection velocity ; Voltage</subject><ispartof>IEEE transactions on electron devices, 2011-05, Vol.58 (5), p.1523-1533</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-a4167da51f81fea867d2639180d1942e3e05e3d05015dc976e4cf8f168ec4a773</citedby><cites>FETCH-LOGICAL-c348t-a4167da51f81fea867d2639180d1942e3e05e3d05015dc976e4cf8f168ec4a773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5735198$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5735198$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24153706$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Han Wang</creatorcontrib><creatorcontrib>Hsu, A</creatorcontrib><creatorcontrib>Jing Kong</creatorcontrib><creatorcontrib>Antoniadis, D A</creatorcontrib><creatorcontrib>Palacios, T</creatorcontrib><title>Compact Virtual-Source Current-Voltage Model for Top- and Back-Gated Graphene Field-Effect Transistors</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This paper presents a compact model for the current-voltage characteristics of graphene field-effect transistors (GFETs), which is based on an extension of the "virtual-source" model previously proposed for Si MOSFETs and is valid for both saturation and nonsaturation regions of device operation. This GFET virtual-source model provides a simple and intuitive understanding of carrier transport in GFETs, allowing extraction of the virtual-source injection velocity v VS , which is a physical parameter with great technological significance for short-channel graphene transistors. The derived I - V characteristics account for the combined effects of the drain-source voltage VDS , the top-gate voltage VTGS , and the back-gate voltage VBGS . With only a small set of fitting parameters, the model shows excellent agreement with experimental data. It is also shown that the extracted virtual-source carrier injection velocity for graphene devices is much higher than in Si MOSFETs and state-of-the-art III-V heterostructure FETs with similar gate length, demonstrating the great potential of GFETs for high-frequency applications. Comparison with experimental data for chemical-vapor-deposited GFETs from our group and epitaxial GFETs in the literature confirms the validity and flexibility of the model for a wide range of existing GFET devices.</description><subject>Ambipolar transport</subject><subject>Applied sciences</subject><subject>Charge carrier processes</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>device model</subject><subject>Devices</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Graphene</subject><subject>graphene field-effect transistors (GFETs)</subject><subject>Logic gates</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>MOSFETs</subject><subject>Physics</subject><subject>Semiconductor devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductor process modeling</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Spontaneous emission</subject><subject>Studies</subject><subject>Transistors</subject><subject>virtual-source carrier injection velocity</subject><subject>Voltage</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE2LFDEQhoMoOK7eBS9BEE8ZU53vo87OjsKKB8e9hpCuaK89nTbpPvjvzTLDHjwVRT31UvUQ8hr4FoC7D8f99bbjANsOwBrlnpANKGWY01I_JRvOwTInrHhOXtR631otZbchaZdPc4gLvRvKsoaRfc9riUh3ayk4Lewuj0v4ifRr7nGkKRd6zDOjYerppxB_s0NYsKeHEuZfOCG9GXDs2T4lbJHHEqY61CWX-pI8S2Gs-OpSr8iPm_1x95ndfjt82X28ZVFIu7AgQZs-KEgWEgbbmk4LB5b34GSHArlC0XPFQfXRGY0yJptAW4wyGCOuyPtz7lzynxXr4k9DjTiOYcK8Vt_M8M44JRr59j_yvn0-teO81aJdIxxvED9DseRaCyY_l-EUyl8P3D9o9027f9DuL9rbyrtLbqgxjKk5iEN93OskKGG4btybMzcg4uNYGaHAWfEPQ0CJuw</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Han Wang</creator><creator>Hsu, A</creator><creator>Jing Kong</creator><creator>Antoniadis, D A</creator><creator>Palacios, T</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110501</creationdate><title>Compact Virtual-Source Current-Voltage Model for Top- and Back-Gated Graphene Field-Effect Transistors</title><author>Han Wang ; Hsu, A ; Jing Kong ; Antoniadis, D A ; Palacios, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-a4167da51f81fea867d2639180d1942e3e05e3d05015dc976e4cf8f168ec4a773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Ambipolar transport</topic><topic>Applied sciences</topic><topic>Charge carrier processes</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>device model</topic><topic>Devices</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Graphene</topic><topic>graphene field-effect transistors (GFETs)</topic><topic>Logic gates</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>MOSFETs</topic><topic>Physics</topic><topic>Semiconductor devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductor process modeling</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Spontaneous emission</topic><topic>Studies</topic><topic>Transistors</topic><topic>virtual-source carrier injection velocity</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han Wang</creatorcontrib><creatorcontrib>Hsu, A</creatorcontrib><creatorcontrib>Jing Kong</creatorcontrib><creatorcontrib>Antoniadis, D A</creatorcontrib><creatorcontrib>Palacios, T</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han Wang</au><au>Hsu, A</au><au>Jing Kong</au><au>Antoniadis, D A</au><au>Palacios, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact Virtual-Source Current-Voltage Model for Top- and Back-Gated Graphene Field-Effect Transistors</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2011-05-01</date><risdate>2011</risdate><volume>58</volume><issue>5</issue><spage>1523</spage><epage>1533</epage><pages>1523-1533</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This paper presents a compact model for the current-voltage characteristics of graphene field-effect transistors (GFETs), which is based on an extension of the "virtual-source" model previously proposed for Si MOSFETs and is valid for both saturation and nonsaturation regions of device operation. This GFET virtual-source model provides a simple and intuitive understanding of carrier transport in GFETs, allowing extraction of the virtual-source injection velocity v VS , which is a physical parameter with great technological significance for short-channel graphene transistors. The derived I - V characteristics account for the combined effects of the drain-source voltage VDS , the top-gate voltage VTGS , and the back-gate voltage VBGS . With only a small set of fitting parameters, the model shows excellent agreement with experimental data. It is also shown that the extracted virtual-source carrier injection velocity for graphene devices is much higher than in Si MOSFETs and state-of-the-art III-V heterostructure FETs with similar gate length, demonstrating the great potential of GFETs for high-frequency applications. Comparison with experimental data for chemical-vapor-deposited GFETs from our group and epitaxial GFETs in the literature confirms the validity and flexibility of the model for a wide range of existing GFET devices.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2011.2118759</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2011-05, Vol.58 (5), p.1523-1533 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_pascalfrancis_primary_24153706 |
source | IEEE Electronic Library (IEL) |
subjects | Ambipolar transport Applied sciences Charge carrier processes Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Cross-disciplinary physics: materials science rheology device model Devices Electric potential Electronics Exact sciences and technology Graphene graphene field-effect transistors (GFETs) Logic gates Materials science Mathematical models Methods of deposition of films and coatings film growth and epitaxy Microelectronic fabrication (materials and surfaces technology) MOSFETs Physics Semiconductor devices Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductor process modeling Semiconductors Silicon Spontaneous emission Studies Transistors virtual-source carrier injection velocity Voltage |
title | Compact Virtual-Source Current-Voltage Model for Top- and Back-Gated Graphene Field-Effect Transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20Virtual-Source%20Current-Voltage%20Model%20for%20Top-%20and%20Back-Gated%20Graphene%20Field-Effect%20Transistors&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Han%20Wang&rft.date=2011-05-01&rft.volume=58&rft.issue=5&rft.spage=1523&rft.epage=1533&rft.pages=1523-1533&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2011.2118759&rft_dat=%3Cproquest_RIE%3E2329121041%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863348390&rft_id=info:pmid/&rft_ieee_id=5735198&rfr_iscdi=true |