Compact Virtual-Source Current-Voltage Model for Top- and Back-Gated Graphene Field-Effect Transistors

This paper presents a compact model for the current-voltage characteristics of graphene field-effect transistors (GFETs), which is based on an extension of the "virtual-source" model previously proposed for Si MOSFETs and is valid for both saturation and nonsaturation regions of device ope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2011-05, Vol.58 (5), p.1523-1533
Hauptverfasser: Han Wang, Hsu, A, Jing Kong, Antoniadis, D A, Palacios, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1533
container_issue 5
container_start_page 1523
container_title IEEE transactions on electron devices
container_volume 58
creator Han Wang
Hsu, A
Jing Kong
Antoniadis, D A
Palacios, T
description This paper presents a compact model for the current-voltage characteristics of graphene field-effect transistors (GFETs), which is based on an extension of the "virtual-source" model previously proposed for Si MOSFETs and is valid for both saturation and nonsaturation regions of device operation. This GFET virtual-source model provides a simple and intuitive understanding of carrier transport in GFETs, allowing extraction of the virtual-source injection velocity v VS , which is a physical parameter with great technological significance for short-channel graphene transistors. The derived I - V characteristics account for the combined effects of the drain-source voltage VDS , the top-gate voltage VTGS , and the back-gate voltage VBGS . With only a small set of fitting parameters, the model shows excellent agreement with experimental data. It is also shown that the extracted virtual-source carrier injection velocity for graphene devices is much higher than in Si MOSFETs and state-of-the-art III-V heterostructure FETs with similar gate length, demonstrating the great potential of GFETs for high-frequency applications. Comparison with experimental data for chemical-vapor-deposited GFETs from our group and epitaxial GFETs in the literature confirms the validity and flexibility of the model for a wide range of existing GFET devices.
doi_str_mv 10.1109/TED.2011.2118759
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_24153706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5735198</ieee_id><sourcerecordid>2329121041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-a4167da51f81fea867d2639180d1942e3e05e3d05015dc976e4cf8f168ec4a773</originalsourceid><addsrcrecordid>eNpdkE2LFDEQhoMoOK7eBS9BEE8ZU53vo87OjsKKB8e9hpCuaK89nTbpPvjvzTLDHjwVRT31UvUQ8hr4FoC7D8f99bbjANsOwBrlnpANKGWY01I_JRvOwTInrHhOXtR631otZbchaZdPc4gLvRvKsoaRfc9riUh3ayk4Lewuj0v4ifRr7nGkKRd6zDOjYerppxB_s0NYsKeHEuZfOCG9GXDs2T4lbJHHEqY61CWX-pI8S2Gs-OpSr8iPm_1x95ndfjt82X28ZVFIu7AgQZs-KEgWEgbbmk4LB5b34GSHArlC0XPFQfXRGY0yJptAW4wyGCOuyPtz7lzynxXr4k9DjTiOYcK8Vt_M8M44JRr59j_yvn0-teO81aJdIxxvED9DseRaCyY_l-EUyl8P3D9o9027f9DuL9rbyrtLbqgxjKk5iEN93OskKGG4btybMzcg4uNYGaHAWfEPQ0CJuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863348390</pqid></control><display><type>article</type><title>Compact Virtual-Source Current-Voltage Model for Top- and Back-Gated Graphene Field-Effect Transistors</title><source>IEEE Electronic Library (IEL)</source><creator>Han Wang ; Hsu, A ; Jing Kong ; Antoniadis, D A ; Palacios, T</creator><creatorcontrib>Han Wang ; Hsu, A ; Jing Kong ; Antoniadis, D A ; Palacios, T</creatorcontrib><description>This paper presents a compact model for the current-voltage characteristics of graphene field-effect transistors (GFETs), which is based on an extension of the "virtual-source" model previously proposed for Si MOSFETs and is valid for both saturation and nonsaturation regions of device operation. This GFET virtual-source model provides a simple and intuitive understanding of carrier transport in GFETs, allowing extraction of the virtual-source injection velocity v VS , which is a physical parameter with great technological significance for short-channel graphene transistors. The derived I - V characteristics account for the combined effects of the drain-source voltage VDS , the top-gate voltage VTGS , and the back-gate voltage VBGS . With only a small set of fitting parameters, the model shows excellent agreement with experimental data. It is also shown that the extracted virtual-source carrier injection velocity for graphene devices is much higher than in Si MOSFETs and state-of-the-art III-V heterostructure FETs with similar gate length, demonstrating the great potential of GFETs for high-frequency applications. Comparison with experimental data for chemical-vapor-deposited GFETs from our group and epitaxial GFETs in the literature confirms the validity and flexibility of the model for a wide range of existing GFET devices.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2011.2118759</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Ambipolar transport ; Applied sciences ; Charge carrier processes ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Cross-disciplinary physics: materials science; rheology ; device model ; Devices ; Electric potential ; Electronics ; Exact sciences and technology ; Graphene ; graphene field-effect transistors (GFETs) ; Logic gates ; Materials science ; Mathematical models ; Methods of deposition of films and coatings; film growth and epitaxy ; Microelectronic fabrication (materials and surfaces technology) ; MOSFETs ; Physics ; Semiconductor devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductor process modeling ; Semiconductors ; Silicon ; Spontaneous emission ; Studies ; Transistors ; virtual-source carrier injection velocity ; Voltage</subject><ispartof>IEEE transactions on electron devices, 2011-05, Vol.58 (5), p.1523-1533</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-a4167da51f81fea867d2639180d1942e3e05e3d05015dc976e4cf8f168ec4a773</citedby><cites>FETCH-LOGICAL-c348t-a4167da51f81fea867d2639180d1942e3e05e3d05015dc976e4cf8f168ec4a773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5735198$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5735198$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24153706$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Han Wang</creatorcontrib><creatorcontrib>Hsu, A</creatorcontrib><creatorcontrib>Jing Kong</creatorcontrib><creatorcontrib>Antoniadis, D A</creatorcontrib><creatorcontrib>Palacios, T</creatorcontrib><title>Compact Virtual-Source Current-Voltage Model for Top- and Back-Gated Graphene Field-Effect Transistors</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This paper presents a compact model for the current-voltage characteristics of graphene field-effect transistors (GFETs), which is based on an extension of the "virtual-source" model previously proposed for Si MOSFETs and is valid for both saturation and nonsaturation regions of device operation. This GFET virtual-source model provides a simple and intuitive understanding of carrier transport in GFETs, allowing extraction of the virtual-source injection velocity v VS , which is a physical parameter with great technological significance for short-channel graphene transistors. The derived I - V characteristics account for the combined effects of the drain-source voltage VDS , the top-gate voltage VTGS , and the back-gate voltage VBGS . With only a small set of fitting parameters, the model shows excellent agreement with experimental data. It is also shown that the extracted virtual-source carrier injection velocity for graphene devices is much higher than in Si MOSFETs and state-of-the-art III-V heterostructure FETs with similar gate length, demonstrating the great potential of GFETs for high-frequency applications. Comparison with experimental data for chemical-vapor-deposited GFETs from our group and epitaxial GFETs in the literature confirms the validity and flexibility of the model for a wide range of existing GFET devices.</description><subject>Ambipolar transport</subject><subject>Applied sciences</subject><subject>Charge carrier processes</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>device model</subject><subject>Devices</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Graphene</subject><subject>graphene field-effect transistors (GFETs)</subject><subject>Logic gates</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>MOSFETs</subject><subject>Physics</subject><subject>Semiconductor devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductor process modeling</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Spontaneous emission</subject><subject>Studies</subject><subject>Transistors</subject><subject>virtual-source carrier injection velocity</subject><subject>Voltage</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE2LFDEQhoMoOK7eBS9BEE8ZU53vo87OjsKKB8e9hpCuaK89nTbpPvjvzTLDHjwVRT31UvUQ8hr4FoC7D8f99bbjANsOwBrlnpANKGWY01I_JRvOwTInrHhOXtR631otZbchaZdPc4gLvRvKsoaRfc9riUh3ayk4Lewuj0v4ifRr7nGkKRd6zDOjYerppxB_s0NYsKeHEuZfOCG9GXDs2T4lbJHHEqY61CWX-pI8S2Gs-OpSr8iPm_1x95ndfjt82X28ZVFIu7AgQZs-KEgWEgbbmk4LB5b34GSHArlC0XPFQfXRGY0yJptAW4wyGCOuyPtz7lzynxXr4k9DjTiOYcK8Vt_M8M44JRr59j_yvn0-teO81aJdIxxvED9DseRaCyY_l-EUyl8P3D9o9027f9DuL9rbyrtLbqgxjKk5iEN93OskKGG4btybMzcg4uNYGaHAWfEPQ0CJuw</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Han Wang</creator><creator>Hsu, A</creator><creator>Jing Kong</creator><creator>Antoniadis, D A</creator><creator>Palacios, T</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110501</creationdate><title>Compact Virtual-Source Current-Voltage Model for Top- and Back-Gated Graphene Field-Effect Transistors</title><author>Han Wang ; Hsu, A ; Jing Kong ; Antoniadis, D A ; Palacios, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-a4167da51f81fea867d2639180d1942e3e05e3d05015dc976e4cf8f168ec4a773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Ambipolar transport</topic><topic>Applied sciences</topic><topic>Charge carrier processes</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>device model</topic><topic>Devices</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Graphene</topic><topic>graphene field-effect transistors (GFETs)</topic><topic>Logic gates</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>MOSFETs</topic><topic>Physics</topic><topic>Semiconductor devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductor process modeling</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Spontaneous emission</topic><topic>Studies</topic><topic>Transistors</topic><topic>virtual-source carrier injection velocity</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han Wang</creatorcontrib><creatorcontrib>Hsu, A</creatorcontrib><creatorcontrib>Jing Kong</creatorcontrib><creatorcontrib>Antoniadis, D A</creatorcontrib><creatorcontrib>Palacios, T</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han Wang</au><au>Hsu, A</au><au>Jing Kong</au><au>Antoniadis, D A</au><au>Palacios, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact Virtual-Source Current-Voltage Model for Top- and Back-Gated Graphene Field-Effect Transistors</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2011-05-01</date><risdate>2011</risdate><volume>58</volume><issue>5</issue><spage>1523</spage><epage>1533</epage><pages>1523-1533</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This paper presents a compact model for the current-voltage characteristics of graphene field-effect transistors (GFETs), which is based on an extension of the "virtual-source" model previously proposed for Si MOSFETs and is valid for both saturation and nonsaturation regions of device operation. This GFET virtual-source model provides a simple and intuitive understanding of carrier transport in GFETs, allowing extraction of the virtual-source injection velocity v VS , which is a physical parameter with great technological significance for short-channel graphene transistors. The derived I - V characteristics account for the combined effects of the drain-source voltage VDS , the top-gate voltage VTGS , and the back-gate voltage VBGS . With only a small set of fitting parameters, the model shows excellent agreement with experimental data. It is also shown that the extracted virtual-source carrier injection velocity for graphene devices is much higher than in Si MOSFETs and state-of-the-art III-V heterostructure FETs with similar gate length, demonstrating the great potential of GFETs for high-frequency applications. Comparison with experimental data for chemical-vapor-deposited GFETs from our group and epitaxial GFETs in the literature confirms the validity and flexibility of the model for a wide range of existing GFET devices.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2011.2118759</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2011-05, Vol.58 (5), p.1523-1533
issn 0018-9383
1557-9646
language eng
recordid cdi_pascalfrancis_primary_24153706
source IEEE Electronic Library (IEL)
subjects Ambipolar transport
Applied sciences
Charge carrier processes
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Cross-disciplinary physics: materials science
rheology
device model
Devices
Electric potential
Electronics
Exact sciences and technology
Graphene
graphene field-effect transistors (GFETs)
Logic gates
Materials science
Mathematical models
Methods of deposition of films and coatings
film growth and epitaxy
Microelectronic fabrication (materials and surfaces technology)
MOSFETs
Physics
Semiconductor devices
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductor process modeling
Semiconductors
Silicon
Spontaneous emission
Studies
Transistors
virtual-source carrier injection velocity
Voltage
title Compact Virtual-Source Current-Voltage Model for Top- and Back-Gated Graphene Field-Effect Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20Virtual-Source%20Current-Voltage%20Model%20for%20Top-%20and%20Back-Gated%20Graphene%20Field-Effect%20Transistors&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Han%20Wang&rft.date=2011-05-01&rft.volume=58&rft.issue=5&rft.spage=1523&rft.epage=1533&rft.pages=1523-1533&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2011.2118759&rft_dat=%3Cproquest_RIE%3E2329121041%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863348390&rft_id=info:pmid/&rft_ieee_id=5735198&rfr_iscdi=true