Bounds for eigenvalues and condition numbers in the p-version of the finite element method

In this paper, we present a theory for bounding the minimum eigenvalues, maximum eigenvalues, and condition numbers of stiffness matrices arising from the p-version of finite element analysis. Bounds are derived for the eigenvalues and the condition numbers, which are valid for stiffness matrices ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 1998-10, Vol.67 (224), p.1423-1450
Hauptverfasser: Hu, Ning, Guo, Xian-Zhong, Katz, I. Norman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a theory for bounding the minimum eigenvalues, maximum eigenvalues, and condition numbers of stiffness matrices arising from the p-version of finite element analysis. Bounds are derived for the eigenvalues and the condition numbers, which are valid for stiffness matrices based on a set of general basis functions that can be used in the p-version. For a set of hierarchical basis functions satisfying the usual local support condition that has been popularly used in the p-version, explicit bounds are derived for the minimum eigenvalues, maximum eigenvalues, and condition numbers of stiffness matrices. We prove that the condition numbers of the stiffness matrices grow like p^{4(d-1)}, where d is the number of dimensions. Our results disprove a conjecture of Olsen and Douglas in which the authors assert that ``regardless of the choice of basis, the condition numbers grow like p^{4d} or faster". Numerical results are also presented which verify that our theoretical bounds are correct.
ISSN:0025-5718
1088-6842
DOI:10.1090/S0025-5718-98-00983-1