Regularized Background Adaptation: A Novel Learning Rate Control Scheme for Gaussian Mixture Modeling
To model a scene for background subtraction, Gaussian mixture modeling (GMM) is a popular choice for its capability of adaptation to background variations. However, GMM often suffers from a tradeoff between robustness to background changes and sensitivity to foreground abnormalities and is inefficie...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2011-03, Vol.20 (3), p.822-836 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 836 |
---|---|
container_issue | 3 |
container_start_page | 822 |
container_title | IEEE transactions on image processing |
container_volume | 20 |
creator | LIN, Homg-Homg CHUANG, Jen-Hui LIU, Tyng-Luh |
description | To model a scene for background subtraction, Gaussian mixture modeling (GMM) is a popular choice for its capability of adaptation to background variations. However, GMM often suffers from a tradeoff between robustness to background changes and sensitivity to foreground abnormalities and is inefficient in managing the tradeoff for various surveillance scenarios. By reviewing the formulations of GMM, we identify that such a tradeoff can be easily controlled by adaptive adjustments of the GMM's learning rates for image pixels at different locations and of distinct properties. A new rate control scheme based on high-level feedback is then developed to provide better regularization of background adaptation for GMM and to help resolving the tradeoff. Additionally, to handle lighting variations that change too fast to be caught by GMM, a heuristic rooting in frame difference is proposed to assist the proposed rate control scheme for reducing false foreground alarms. Experiments show the proposed learning rate control scheme, together with the heuristic for adaptation of over-quick lighting change, gives better performance than conventional GMM approaches. |
doi_str_mv | 10.1109/TIP.2010.2075938 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_23896900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5570957</ieee_id><sourcerecordid>1671298568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-5322cb785a624a7834cb136f650a4172dcb581ac0b9cf8fec97d5bf7d97123b93</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhoMo9kPvBUGCIHoz9SSTz96ti9bCVqXW6yGTObNOnU3WZKaov96UXSt44VUS8rwvOXkIecLghDGwr6_OP51wKCcOWtra3COHzApWAQh-v-xB6kozYQ_IUc7XAExIph6SAw5GgAV2SPAS1_Po0vALO_rG-W_rFOfQ0UXntpObhhhO6YJ-iDc40hW6FIawppduQrqMYUpxpJ_9V9wg7WOiZ27OeXCBXgw_pjkhvYgdjiXxiDzo3Zjx8X49Jl_evb1avq9WH8_Ol4tV5YUWUyVrzn2rjXSKC6dNLXzLatUrCU4wzTvfSsOch9b63vTore5k2-vOasbr1tbH5OWud5vi9xnz1GyG7HEcXcA458ZIXqY2RhXy1X9JpkqlNVKZgj7_B72OcwpljtLHrBLllwsEO8inmHPCvtmmYePSz4ZBc-uqKa6aW1fN3lWJPNv3zu0Gu7vAHzkFeLEHXPZu7JMLfsh_udpYZQEK93THDYh4dy2lBlte9htJCqOD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>851964057</pqid></control><display><type>article</type><title>Regularized Background Adaptation: A Novel Learning Rate Control Scheme for Gaussian Mixture Modeling</title><source>IEEE Electronic Library (IEL)</source><creator>LIN, Homg-Homg ; CHUANG, Jen-Hui ; LIU, Tyng-Luh</creator><creatorcontrib>LIN, Homg-Homg ; CHUANG, Jen-Hui ; LIU, Tyng-Luh</creatorcontrib><description>To model a scene for background subtraction, Gaussian mixture modeling (GMM) is a popular choice for its capability of adaptation to background variations. However, GMM often suffers from a tradeoff between robustness to background changes and sensitivity to foreground abnormalities and is inefficient in managing the tradeoff for various surveillance scenarios. By reviewing the formulations of GMM, we identify that such a tradeoff can be easily controlled by adaptive adjustments of the GMM's learning rates for image pixels at different locations and of distinct properties. A new rate control scheme based on high-level feedback is then developed to provide better regularization of background adaptation for GMM and to help resolving the tradeoff. Additionally, to handle lighting variations that change too fast to be caught by GMM, a heuristic rooting in frame difference is proposed to assist the proposed rate control scheme for reducing false foreground alarms. Experiments show the proposed learning rate control scheme, together with the heuristic for adaptation of over-quick lighting change, gives better performance than conventional GMM approaches.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2010.2075938</identifier><identifier>PMID: 20840901</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptation ; Adaptation model ; Alarms ; Applied sciences ; Background subtraction ; Computational modeling ; Exact sciences and technology ; Feedback control ; Gaussian ; Gaussian mixture modeling ; Heuristic ; Illumination ; Image processing ; Information, signal and communications theory ; Learning ; learning rate control ; Lighting ; Maintenance engineering ; Pixel ; Robustness ; Sensitivity ; Signal processing ; surveillance ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2011-03, Vol.20 (3), p.822-836</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-5322cb785a624a7834cb136f650a4172dcb581ac0b9cf8fec97d5bf7d97123b93</citedby><cites>FETCH-LOGICAL-c474t-5322cb785a624a7834cb136f650a4172dcb581ac0b9cf8fec97d5bf7d97123b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5570957$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5570957$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23896900$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20840901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LIN, Homg-Homg</creatorcontrib><creatorcontrib>CHUANG, Jen-Hui</creatorcontrib><creatorcontrib>LIU, Tyng-Luh</creatorcontrib><title>Regularized Background Adaptation: A Novel Learning Rate Control Scheme for Gaussian Mixture Modeling</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>To model a scene for background subtraction, Gaussian mixture modeling (GMM) is a popular choice for its capability of adaptation to background variations. However, GMM often suffers from a tradeoff between robustness to background changes and sensitivity to foreground abnormalities and is inefficient in managing the tradeoff for various surveillance scenarios. By reviewing the formulations of GMM, we identify that such a tradeoff can be easily controlled by adaptive adjustments of the GMM's learning rates for image pixels at different locations and of distinct properties. A new rate control scheme based on high-level feedback is then developed to provide better regularization of background adaptation for GMM and to help resolving the tradeoff. Additionally, to handle lighting variations that change too fast to be caught by GMM, a heuristic rooting in frame difference is proposed to assist the proposed rate control scheme for reducing false foreground alarms. Experiments show the proposed learning rate control scheme, together with the heuristic for adaptation of over-quick lighting change, gives better performance than conventional GMM approaches.</description><subject>Adaptation</subject><subject>Adaptation model</subject><subject>Alarms</subject><subject>Applied sciences</subject><subject>Background subtraction</subject><subject>Computational modeling</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Gaussian</subject><subject>Gaussian mixture modeling</subject><subject>Heuristic</subject><subject>Illumination</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Learning</subject><subject>learning rate control</subject><subject>Lighting</subject><subject>Maintenance engineering</subject><subject>Pixel</subject><subject>Robustness</subject><subject>Sensitivity</subject><subject>Signal processing</subject><subject>surveillance</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kV1rFDEUhoMo9kPvBUGCIHoz9SSTz96ti9bCVqXW6yGTObNOnU3WZKaov96UXSt44VUS8rwvOXkIecLghDGwr6_OP51wKCcOWtra3COHzApWAQh-v-xB6kozYQ_IUc7XAExIph6SAw5GgAV2SPAS1_Po0vALO_rG-W_rFOfQ0UXntpObhhhO6YJ-iDc40hW6FIawppduQrqMYUpxpJ_9V9wg7WOiZ27OeXCBXgw_pjkhvYgdjiXxiDzo3Zjx8X49Jl_evb1avq9WH8_Ol4tV5YUWUyVrzn2rjXSKC6dNLXzLatUrCU4wzTvfSsOch9b63vTore5k2-vOasbr1tbH5OWud5vi9xnz1GyG7HEcXcA458ZIXqY2RhXy1X9JpkqlNVKZgj7_B72OcwpljtLHrBLllwsEO8inmHPCvtmmYePSz4ZBc-uqKa6aW1fN3lWJPNv3zu0Gu7vAHzkFeLEHXPZu7JMLfsh_udpYZQEK93THDYh4dy2lBlte9htJCqOD</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>LIN, Homg-Homg</creator><creator>CHUANG, Jen-Hui</creator><creator>LIU, Tyng-Luh</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20110301</creationdate><title>Regularized Background Adaptation: A Novel Learning Rate Control Scheme for Gaussian Mixture Modeling</title><author>LIN, Homg-Homg ; CHUANG, Jen-Hui ; LIU, Tyng-Luh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-5322cb785a624a7834cb136f650a4172dcb581ac0b9cf8fec97d5bf7d97123b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation</topic><topic>Adaptation model</topic><topic>Alarms</topic><topic>Applied sciences</topic><topic>Background subtraction</topic><topic>Computational modeling</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Gaussian</topic><topic>Gaussian mixture modeling</topic><topic>Heuristic</topic><topic>Illumination</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Learning</topic><topic>learning rate control</topic><topic>Lighting</topic><topic>Maintenance engineering</topic><topic>Pixel</topic><topic>Robustness</topic><topic>Sensitivity</topic><topic>Signal processing</topic><topic>surveillance</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIN, Homg-Homg</creatorcontrib><creatorcontrib>CHUANG, Jen-Hui</creatorcontrib><creatorcontrib>LIU, Tyng-Luh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIN, Homg-Homg</au><au>CHUANG, Jen-Hui</au><au>LIU, Tyng-Luh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularized Background Adaptation: A Novel Learning Rate Control Scheme for Gaussian Mixture Modeling</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>20</volume><issue>3</issue><spage>822</spage><epage>836</epage><pages>822-836</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>To model a scene for background subtraction, Gaussian mixture modeling (GMM) is a popular choice for its capability of adaptation to background variations. However, GMM often suffers from a tradeoff between robustness to background changes and sensitivity to foreground abnormalities and is inefficient in managing the tradeoff for various surveillance scenarios. By reviewing the formulations of GMM, we identify that such a tradeoff can be easily controlled by adaptive adjustments of the GMM's learning rates for image pixels at different locations and of distinct properties. A new rate control scheme based on high-level feedback is then developed to provide better regularization of background adaptation for GMM and to help resolving the tradeoff. Additionally, to handle lighting variations that change too fast to be caught by GMM, a heuristic rooting in frame difference is proposed to assist the proposed rate control scheme for reducing false foreground alarms. Experiments show the proposed learning rate control scheme, together with the heuristic for adaptation of over-quick lighting change, gives better performance than conventional GMM approaches.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>20840901</pmid><doi>10.1109/TIP.2010.2075938</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2011-03, Vol.20 (3), p.822-836 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pascalfrancis_primary_23896900 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation Adaptation model Alarms Applied sciences Background subtraction Computational modeling Exact sciences and technology Feedback control Gaussian Gaussian mixture modeling Heuristic Illumination Image processing Information, signal and communications theory Learning learning rate control Lighting Maintenance engineering Pixel Robustness Sensitivity Signal processing surveillance Telecommunications and information theory |
title | Regularized Background Adaptation: A Novel Learning Rate Control Scheme for Gaussian Mixture Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularized%20Background%20Adaptation:%20A%20Novel%20Learning%20Rate%20Control%20Scheme%20for%20Gaussian%20Mixture%20Modeling&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=LIN,%20Homg-Homg&rft.date=2011-03-01&rft.volume=20&rft.issue=3&rft.spage=822&rft.epage=836&rft.pages=822-836&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2010.2075938&rft_dat=%3Cproquest_RIE%3E1671298568%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=851964057&rft_id=info:pmid/20840901&rft_ieee_id=5570957&rfr_iscdi=true |