Regularized Background Adaptation: A Novel Learning Rate Control Scheme for Gaussian Mixture Modeling

To model a scene for background subtraction, Gaussian mixture modeling (GMM) is a popular choice for its capability of adaptation to background variations. However, GMM often suffers from a tradeoff between robustness to background changes and sensitivity to foreground abnormalities and is inefficie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2011-03, Vol.20 (3), p.822-836
Hauptverfasser: LIN, Homg-Homg, CHUANG, Jen-Hui, LIU, Tyng-Luh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 836
container_issue 3
container_start_page 822
container_title IEEE transactions on image processing
container_volume 20
creator LIN, Homg-Homg
CHUANG, Jen-Hui
LIU, Tyng-Luh
description To model a scene for background subtraction, Gaussian mixture modeling (GMM) is a popular choice for its capability of adaptation to background variations. However, GMM often suffers from a tradeoff between robustness to background changes and sensitivity to foreground abnormalities and is inefficient in managing the tradeoff for various surveillance scenarios. By reviewing the formulations of GMM, we identify that such a tradeoff can be easily controlled by adaptive adjustments of the GMM's learning rates for image pixels at different locations and of distinct properties. A new rate control scheme based on high-level feedback is then developed to provide better regularization of background adaptation for GMM and to help resolving the tradeoff. Additionally, to handle lighting variations that change too fast to be caught by GMM, a heuristic rooting in frame difference is proposed to assist the proposed rate control scheme for reducing false foreground alarms. Experiments show the proposed learning rate control scheme, together with the heuristic for adaptation of over-quick lighting change, gives better performance than conventional GMM approaches.
doi_str_mv 10.1109/TIP.2010.2075938
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_23896900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5570957</ieee_id><sourcerecordid>1671298568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-5322cb785a624a7834cb136f650a4172dcb581ac0b9cf8fec97d5bf7d97123b93</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhoMo9kPvBUGCIHoz9SSTz96ti9bCVqXW6yGTObNOnU3WZKaov96UXSt44VUS8rwvOXkIecLghDGwr6_OP51wKCcOWtra3COHzApWAQh-v-xB6kozYQ_IUc7XAExIph6SAw5GgAV2SPAS1_Po0vALO_rG-W_rFOfQ0UXntpObhhhO6YJ-iDc40hW6FIawppduQrqMYUpxpJ_9V9wg7WOiZ27OeXCBXgw_pjkhvYgdjiXxiDzo3Zjx8X49Jl_evb1avq9WH8_Ol4tV5YUWUyVrzn2rjXSKC6dNLXzLatUrCU4wzTvfSsOch9b63vTore5k2-vOasbr1tbH5OWud5vi9xnz1GyG7HEcXcA458ZIXqY2RhXy1X9JpkqlNVKZgj7_B72OcwpljtLHrBLllwsEO8inmHPCvtmmYePSz4ZBc-uqKa6aW1fN3lWJPNv3zu0Gu7vAHzkFeLEHXPZu7JMLfsh_udpYZQEK93THDYh4dy2lBlte9htJCqOD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>851964057</pqid></control><display><type>article</type><title>Regularized Background Adaptation: A Novel Learning Rate Control Scheme for Gaussian Mixture Modeling</title><source>IEEE Electronic Library (IEL)</source><creator>LIN, Homg-Homg ; CHUANG, Jen-Hui ; LIU, Tyng-Luh</creator><creatorcontrib>LIN, Homg-Homg ; CHUANG, Jen-Hui ; LIU, Tyng-Luh</creatorcontrib><description>To model a scene for background subtraction, Gaussian mixture modeling (GMM) is a popular choice for its capability of adaptation to background variations. However, GMM often suffers from a tradeoff between robustness to background changes and sensitivity to foreground abnormalities and is inefficient in managing the tradeoff for various surveillance scenarios. By reviewing the formulations of GMM, we identify that such a tradeoff can be easily controlled by adaptive adjustments of the GMM's learning rates for image pixels at different locations and of distinct properties. A new rate control scheme based on high-level feedback is then developed to provide better regularization of background adaptation for GMM and to help resolving the tradeoff. Additionally, to handle lighting variations that change too fast to be caught by GMM, a heuristic rooting in frame difference is proposed to assist the proposed rate control scheme for reducing false foreground alarms. Experiments show the proposed learning rate control scheme, together with the heuristic for adaptation of over-quick lighting change, gives better performance than conventional GMM approaches.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2010.2075938</identifier><identifier>PMID: 20840901</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptation ; Adaptation model ; Alarms ; Applied sciences ; Background subtraction ; Computational modeling ; Exact sciences and technology ; Feedback control ; Gaussian ; Gaussian mixture modeling ; Heuristic ; Illumination ; Image processing ; Information, signal and communications theory ; Learning ; learning rate control ; Lighting ; Maintenance engineering ; Pixel ; Robustness ; Sensitivity ; Signal processing ; surveillance ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2011-03, Vol.20 (3), p.822-836</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-5322cb785a624a7834cb136f650a4172dcb581ac0b9cf8fec97d5bf7d97123b93</citedby><cites>FETCH-LOGICAL-c474t-5322cb785a624a7834cb136f650a4172dcb581ac0b9cf8fec97d5bf7d97123b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5570957$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5570957$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23896900$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20840901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LIN, Homg-Homg</creatorcontrib><creatorcontrib>CHUANG, Jen-Hui</creatorcontrib><creatorcontrib>LIU, Tyng-Luh</creatorcontrib><title>Regularized Background Adaptation: A Novel Learning Rate Control Scheme for Gaussian Mixture Modeling</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>To model a scene for background subtraction, Gaussian mixture modeling (GMM) is a popular choice for its capability of adaptation to background variations. However, GMM often suffers from a tradeoff between robustness to background changes and sensitivity to foreground abnormalities and is inefficient in managing the tradeoff for various surveillance scenarios. By reviewing the formulations of GMM, we identify that such a tradeoff can be easily controlled by adaptive adjustments of the GMM's learning rates for image pixels at different locations and of distinct properties. A new rate control scheme based on high-level feedback is then developed to provide better regularization of background adaptation for GMM and to help resolving the tradeoff. Additionally, to handle lighting variations that change too fast to be caught by GMM, a heuristic rooting in frame difference is proposed to assist the proposed rate control scheme for reducing false foreground alarms. Experiments show the proposed learning rate control scheme, together with the heuristic for adaptation of over-quick lighting change, gives better performance than conventional GMM approaches.</description><subject>Adaptation</subject><subject>Adaptation model</subject><subject>Alarms</subject><subject>Applied sciences</subject><subject>Background subtraction</subject><subject>Computational modeling</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Gaussian</subject><subject>Gaussian mixture modeling</subject><subject>Heuristic</subject><subject>Illumination</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Learning</subject><subject>learning rate control</subject><subject>Lighting</subject><subject>Maintenance engineering</subject><subject>Pixel</subject><subject>Robustness</subject><subject>Sensitivity</subject><subject>Signal processing</subject><subject>surveillance</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kV1rFDEUhoMo9kPvBUGCIHoz9SSTz96ti9bCVqXW6yGTObNOnU3WZKaov96UXSt44VUS8rwvOXkIecLghDGwr6_OP51wKCcOWtra3COHzApWAQh-v-xB6kozYQ_IUc7XAExIph6SAw5GgAV2SPAS1_Po0vALO_rG-W_rFOfQ0UXntpObhhhO6YJ-iDc40hW6FIawppduQrqMYUpxpJ_9V9wg7WOiZ27OeXCBXgw_pjkhvYgdjiXxiDzo3Zjx8X49Jl_evb1avq9WH8_Ol4tV5YUWUyVrzn2rjXSKC6dNLXzLatUrCU4wzTvfSsOch9b63vTore5k2-vOasbr1tbH5OWud5vi9xnz1GyG7HEcXcA458ZIXqY2RhXy1X9JpkqlNVKZgj7_B72OcwpljtLHrBLllwsEO8inmHPCvtmmYePSz4ZBc-uqKa6aW1fN3lWJPNv3zu0Gu7vAHzkFeLEHXPZu7JMLfsh_udpYZQEK93THDYh4dy2lBlte9htJCqOD</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>LIN, Homg-Homg</creator><creator>CHUANG, Jen-Hui</creator><creator>LIU, Tyng-Luh</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20110301</creationdate><title>Regularized Background Adaptation: A Novel Learning Rate Control Scheme for Gaussian Mixture Modeling</title><author>LIN, Homg-Homg ; CHUANG, Jen-Hui ; LIU, Tyng-Luh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-5322cb785a624a7834cb136f650a4172dcb581ac0b9cf8fec97d5bf7d97123b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation</topic><topic>Adaptation model</topic><topic>Alarms</topic><topic>Applied sciences</topic><topic>Background subtraction</topic><topic>Computational modeling</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Gaussian</topic><topic>Gaussian mixture modeling</topic><topic>Heuristic</topic><topic>Illumination</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Learning</topic><topic>learning rate control</topic><topic>Lighting</topic><topic>Maintenance engineering</topic><topic>Pixel</topic><topic>Robustness</topic><topic>Sensitivity</topic><topic>Signal processing</topic><topic>surveillance</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIN, Homg-Homg</creatorcontrib><creatorcontrib>CHUANG, Jen-Hui</creatorcontrib><creatorcontrib>LIU, Tyng-Luh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIN, Homg-Homg</au><au>CHUANG, Jen-Hui</au><au>LIU, Tyng-Luh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularized Background Adaptation: A Novel Learning Rate Control Scheme for Gaussian Mixture Modeling</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>20</volume><issue>3</issue><spage>822</spage><epage>836</epage><pages>822-836</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>To model a scene for background subtraction, Gaussian mixture modeling (GMM) is a popular choice for its capability of adaptation to background variations. However, GMM often suffers from a tradeoff between robustness to background changes and sensitivity to foreground abnormalities and is inefficient in managing the tradeoff for various surveillance scenarios. By reviewing the formulations of GMM, we identify that such a tradeoff can be easily controlled by adaptive adjustments of the GMM's learning rates for image pixels at different locations and of distinct properties. A new rate control scheme based on high-level feedback is then developed to provide better regularization of background adaptation for GMM and to help resolving the tradeoff. Additionally, to handle lighting variations that change too fast to be caught by GMM, a heuristic rooting in frame difference is proposed to assist the proposed rate control scheme for reducing false foreground alarms. Experiments show the proposed learning rate control scheme, together with the heuristic for adaptation of over-quick lighting change, gives better performance than conventional GMM approaches.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>20840901</pmid><doi>10.1109/TIP.2010.2075938</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2011-03, Vol.20 (3), p.822-836
issn 1057-7149
1941-0042
language eng
recordid cdi_pascalfrancis_primary_23896900
source IEEE Electronic Library (IEL)
subjects Adaptation
Adaptation model
Alarms
Applied sciences
Background subtraction
Computational modeling
Exact sciences and technology
Feedback control
Gaussian
Gaussian mixture modeling
Heuristic
Illumination
Image processing
Information, signal and communications theory
Learning
learning rate control
Lighting
Maintenance engineering
Pixel
Robustness
Sensitivity
Signal processing
surveillance
Telecommunications and information theory
title Regularized Background Adaptation: A Novel Learning Rate Control Scheme for Gaussian Mixture Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularized%20Background%20Adaptation:%20A%20Novel%20Learning%20Rate%20Control%20Scheme%20for%20Gaussian%20Mixture%20Modeling&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=LIN,%20Homg-Homg&rft.date=2011-03-01&rft.volume=20&rft.issue=3&rft.spage=822&rft.epage=836&rft.pages=822-836&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2010.2075938&rft_dat=%3Cproquest_RIE%3E1671298568%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=851964057&rft_id=info:pmid/20840901&rft_ieee_id=5570957&rfr_iscdi=true