Downstream Exposure to Growth Factors Causes Elevated Velocity and Dilation in Arteriolar Networks
Our goal was to characterize changes in flow and diameter with vascular endothelial cell growth factor A (VEGF-A) and fibroblast growth factor 2 (FGF2). Observations were made in arteriolar networks of the cheek pouch tissue in anesthetized hamsters (pentobarbital 70 mg/kg, i.p., n = 45). Local and...
Gespeichert in:
Veröffentlicht in: | Journal of vascular research 2011-01, Vol.48 (1), p.11-22 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | 1 |
container_start_page | 11 |
container_title | Journal of vascular research |
container_volume | 48 |
creator | Georgi, Melissa K. Dewar, Anthony M. Frame, Mary D. |
description | Our goal was to characterize changes in flow and diameter with vascular endothelial cell growth factor A (VEGF-A) and fibroblast growth factor 2 (FGF2). Observations were made in arteriolar networks of the cheek pouch tissue in anesthetized hamsters (pentobarbital 70 mg/kg, i.p., n = 45). Local and remote dilation responses to micropipette-applied VEGF or FGF2 yielded similar EC 50 values. The role of gap junctions in the remote response was tested by applying sucrose, halothane or 18αGA to the feed arteriole midway between the remote stimulation and upstream observation sites; all remote dilation to FGF2 was prevented, while only the early dilation to VEGF was blocked. The remote dilation to VEGF displayed a second rheologic mechanism. The second mechanism involved an abrupt increase in upstream velocity and shear rate, followed by nitro-arginine sensitive dilation. To test whether the abrupt increase in shear could be caused by other agents known to cause edema, remote responses to histamine and thrombin were tested. Each caused an abrupt increase in velocity followed by nitro-arginine-sensitive dilation. This study shows that VEGF or agents that increase permeability can initiate an upstream velocity increase with dilation that recruits flow to the network; this is in addition to simultaneous gap junction-mediated dilation. |
doi_str_mv | 10.1159/000317396 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_23839970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211976441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-9e8a61f64456058f9343bf492cc6cef9028f9fcfac9be9ab6b692985eec409333</originalsourceid><addsrcrecordid>eNp90c9rFDEUB_BBLLZWD95FglCsh9H8mkxyKZTttgpFL-o1vMm-adPOTtYk07X_vdFd1x8HIZCQfPgmea-qnjH6hrHGvKWUCtYKox5UB0xyUVMmmodlTZmuGWv5fvU4pRtKmTRaPar2OVVUSdUeVN1ZWI8pR4QlmX9bhTRFJDmQixjW-Zqcg8shJjKDKWEi8wHvIOOCfMEhOJ_vCYwLcuYHyD6MxI_kNGaMPgwQyQfM6xBv05Nqr4ch4dPtfFh9Pp9_mr2rLz9evJ-dXtZO6ibXBjUo1ispG0Ub3RshRddLw51TDntDednrXQ_OdGigU50y3OgG0UlqhBCH1ckmdzV1S1w4HHOEwa6iX0K8twG8_ftk9Nf2KtxZwUtdGlYCXm0DYvg6Ycp26ZPDYYARw5Ss5qXYuowij_8rGRVaUV7-UujLf-hNmOJYCmE1a2XTtD_zXm-QiyGliP3u1YzaHy22uxYX--LPb-7kr54WcLQFkBwMfYTR-fTbCS2MaWlxzzfuFuIVxh3Y3vMdcZS3vw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>817455798</pqid></control><display><type>article</type><title>Downstream Exposure to Growth Factors Causes Elevated Velocity and Dilation in Arteriolar Networks</title><source>MEDLINE</source><source>Karger Journals</source><source>Alma/SFX Local Collection</source><creator>Georgi, Melissa K. ; Dewar, Anthony M. ; Frame, Mary D.</creator><creatorcontrib>Georgi, Melissa K. ; Dewar, Anthony M. ; Frame, Mary D.</creatorcontrib><description>Our goal was to characterize changes in flow and diameter with vascular endothelial cell growth factor A (VEGF-A) and fibroblast growth factor 2 (FGF2). Observations were made in arteriolar networks of the cheek pouch tissue in anesthetized hamsters (pentobarbital 70 mg/kg, i.p., n = 45). Local and remote dilation responses to micropipette-applied VEGF or FGF2 yielded similar EC 50 values. The role of gap junctions in the remote response was tested by applying sucrose, halothane or 18αGA to the feed arteriole midway between the remote stimulation and upstream observation sites; all remote dilation to FGF2 was prevented, while only the early dilation to VEGF was blocked. The remote dilation to VEGF displayed a second rheologic mechanism. The second mechanism involved an abrupt increase in upstream velocity and shear rate, followed by nitro-arginine sensitive dilation. To test whether the abrupt increase in shear could be caused by other agents known to cause edema, remote responses to histamine and thrombin were tested. Each caused an abrupt increase in velocity followed by nitro-arginine-sensitive dilation. This study shows that VEGF or agents that increase permeability can initiate an upstream velocity increase with dilation that recruits flow to the network; this is in addition to simultaneous gap junction-mediated dilation.</description><identifier>ISSN: 1018-1172</identifier><identifier>EISSN: 1423-0135</identifier><identifier>DOI: 10.1159/000317396</identifier><identifier>PMID: 20606467</identifier><identifier>CODEN: JVREE9</identifier><language>eng</language><publisher>Basel, Switzerland: Karger</publisher><subject>Animals ; Arterioles ; Arterioles - drug effects ; Arterioles - physiology ; Biological and medical sciences ; Blood Flow Velocity - drug effects ; Blood Flow Velocity - physiology ; Capillary Permeability - drug effects ; Capillary Permeability - physiology ; Cheek - blood supply ; Cheek pouch ; Cricetinae ; Edema ; Endothelial cells ; Extracellular Matrix - physiology ; Fibroblast growth factor 2 ; Fibroblast Growth Factor 2 - pharmacology ; Fibroblast Growth Factor 2 - physiology ; Fundamental and applied biological sciences. Psychology ; Gap junctions ; Gap Junctions - drug effects ; Gap Junctions - physiology ; Halothane ; Histamine ; Male ; Permeability ; Phenobarbital ; Research Paper ; Rheology ; Shear Strength - drug effects ; Shear Strength - physiology ; Sucrose ; Thrombin ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - pharmacology ; Vascular Endothelial Growth Factor A - physiology ; Vasodilation - drug effects ; Vasodilation - physiology ; Vertebrates: cardiovascular system</subject><ispartof>Journal of vascular research, 2011-01, Vol.48 (1), p.11-22</ispartof><rights>2010 S. Karger AG, Basel</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 S. Karger AG, Basel.</rights><rights>Copyright (c) 2010 S. Karger AG, Basel</rights><rights>Copyright © 2010 by S. Karger AG, Basel 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-9e8a61f64456058f9343bf492cc6cef9028f9fcfac9be9ab6b692985eec409333</citedby><cites>FETCH-LOGICAL-c485t-9e8a61f64456058f9343bf492cc6cef9028f9fcfac9be9ab6b692985eec409333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2429,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23839970$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20606467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Georgi, Melissa K.</creatorcontrib><creatorcontrib>Dewar, Anthony M.</creatorcontrib><creatorcontrib>Frame, Mary D.</creatorcontrib><title>Downstream Exposure to Growth Factors Causes Elevated Velocity and Dilation in Arteriolar Networks</title><title>Journal of vascular research</title><addtitle>J Vasc Res</addtitle><description>Our goal was to characterize changes in flow and diameter with vascular endothelial cell growth factor A (VEGF-A) and fibroblast growth factor 2 (FGF2). Observations were made in arteriolar networks of the cheek pouch tissue in anesthetized hamsters (pentobarbital 70 mg/kg, i.p., n = 45). Local and remote dilation responses to micropipette-applied VEGF or FGF2 yielded similar EC 50 values. The role of gap junctions in the remote response was tested by applying sucrose, halothane or 18αGA to the feed arteriole midway between the remote stimulation and upstream observation sites; all remote dilation to FGF2 was prevented, while only the early dilation to VEGF was blocked. The remote dilation to VEGF displayed a second rheologic mechanism. The second mechanism involved an abrupt increase in upstream velocity and shear rate, followed by nitro-arginine sensitive dilation. To test whether the abrupt increase in shear could be caused by other agents known to cause edema, remote responses to histamine and thrombin were tested. Each caused an abrupt increase in velocity followed by nitro-arginine-sensitive dilation. This study shows that VEGF or agents that increase permeability can initiate an upstream velocity increase with dilation that recruits flow to the network; this is in addition to simultaneous gap junction-mediated dilation.</description><subject>Animals</subject><subject>Arterioles</subject><subject>Arterioles - drug effects</subject><subject>Arterioles - physiology</subject><subject>Biological and medical sciences</subject><subject>Blood Flow Velocity - drug effects</subject><subject>Blood Flow Velocity - physiology</subject><subject>Capillary Permeability - drug effects</subject><subject>Capillary Permeability - physiology</subject><subject>Cheek - blood supply</subject><subject>Cheek pouch</subject><subject>Cricetinae</subject><subject>Edema</subject><subject>Endothelial cells</subject><subject>Extracellular Matrix - physiology</subject><subject>Fibroblast growth factor 2</subject><subject>Fibroblast Growth Factor 2 - pharmacology</subject><subject>Fibroblast Growth Factor 2 - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gap junctions</subject><subject>Gap Junctions - drug effects</subject><subject>Gap Junctions - physiology</subject><subject>Halothane</subject><subject>Histamine</subject><subject>Male</subject><subject>Permeability</subject><subject>Phenobarbital</subject><subject>Research Paper</subject><subject>Rheology</subject><subject>Shear Strength - drug effects</subject><subject>Shear Strength - physiology</subject><subject>Sucrose</subject><subject>Thrombin</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - pharmacology</subject><subject>Vascular Endothelial Growth Factor A - physiology</subject><subject>Vasodilation - drug effects</subject><subject>Vasodilation - physiology</subject><subject>Vertebrates: cardiovascular system</subject><issn>1018-1172</issn><issn>1423-0135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90c9rFDEUB_BBLLZWD95FglCsh9H8mkxyKZTttgpFL-o1vMm-adPOTtYk07X_vdFd1x8HIZCQfPgmea-qnjH6hrHGvKWUCtYKox5UB0xyUVMmmodlTZmuGWv5fvU4pRtKmTRaPar2OVVUSdUeVN1ZWI8pR4QlmX9bhTRFJDmQixjW-Zqcg8shJjKDKWEi8wHvIOOCfMEhOJ_vCYwLcuYHyD6MxI_kNGaMPgwQyQfM6xBv05Nqr4ch4dPtfFh9Pp9_mr2rLz9evJ-dXtZO6ibXBjUo1ispG0Ub3RshRddLw51TDntDednrXQ_OdGigU50y3OgG0UlqhBCH1ckmdzV1S1w4HHOEwa6iX0K8twG8_ftk9Nf2KtxZwUtdGlYCXm0DYvg6Ycp26ZPDYYARw5Ss5qXYuowij_8rGRVaUV7-UujLf-hNmOJYCmE1a2XTtD_zXm-QiyGliP3u1YzaHy22uxYX--LPb-7kr54WcLQFkBwMfYTR-fTbCS2MaWlxzzfuFuIVxh3Y3vMdcZS3vw</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Georgi, Melissa K.</creator><creator>Dewar, Anthony M.</creator><creator>Frame, Mary D.</creator><general>Karger</general><general>S. Karger AG</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7U7</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110101</creationdate><title>Downstream Exposure to Growth Factors Causes Elevated Velocity and Dilation in Arteriolar Networks</title><author>Georgi, Melissa K. ; Dewar, Anthony M. ; Frame, Mary D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-9e8a61f64456058f9343bf492cc6cef9028f9fcfac9be9ab6b692985eec409333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Arterioles</topic><topic>Arterioles - drug effects</topic><topic>Arterioles - physiology</topic><topic>Biological and medical sciences</topic><topic>Blood Flow Velocity - drug effects</topic><topic>Blood Flow Velocity - physiology</topic><topic>Capillary Permeability - drug effects</topic><topic>Capillary Permeability - physiology</topic><topic>Cheek - blood supply</topic><topic>Cheek pouch</topic><topic>Cricetinae</topic><topic>Edema</topic><topic>Endothelial cells</topic><topic>Extracellular Matrix - physiology</topic><topic>Fibroblast growth factor 2</topic><topic>Fibroblast Growth Factor 2 - pharmacology</topic><topic>Fibroblast Growth Factor 2 - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gap junctions</topic><topic>Gap Junctions - drug effects</topic><topic>Gap Junctions - physiology</topic><topic>Halothane</topic><topic>Histamine</topic><topic>Male</topic><topic>Permeability</topic><topic>Phenobarbital</topic><topic>Research Paper</topic><topic>Rheology</topic><topic>Shear Strength - drug effects</topic><topic>Shear Strength - physiology</topic><topic>Sucrose</topic><topic>Thrombin</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - pharmacology</topic><topic>Vascular Endothelial Growth Factor A - physiology</topic><topic>Vasodilation - drug effects</topic><topic>Vasodilation - physiology</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgi, Melissa K.</creatorcontrib><creatorcontrib>Dewar, Anthony M.</creatorcontrib><creatorcontrib>Frame, Mary D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Toxicology Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of vascular research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georgi, Melissa K.</au><au>Dewar, Anthony M.</au><au>Frame, Mary D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downstream Exposure to Growth Factors Causes Elevated Velocity and Dilation in Arteriolar Networks</atitle><jtitle>Journal of vascular research</jtitle><addtitle>J Vasc Res</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>48</volume><issue>1</issue><spage>11</spage><epage>22</epage><pages>11-22</pages><issn>1018-1172</issn><eissn>1423-0135</eissn><coden>JVREE9</coden><abstract>Our goal was to characterize changes in flow and diameter with vascular endothelial cell growth factor A (VEGF-A) and fibroblast growth factor 2 (FGF2). Observations were made in arteriolar networks of the cheek pouch tissue in anesthetized hamsters (pentobarbital 70 mg/kg, i.p., n = 45). Local and remote dilation responses to micropipette-applied VEGF or FGF2 yielded similar EC 50 values. The role of gap junctions in the remote response was tested by applying sucrose, halothane or 18αGA to the feed arteriole midway between the remote stimulation and upstream observation sites; all remote dilation to FGF2 was prevented, while only the early dilation to VEGF was blocked. The remote dilation to VEGF displayed a second rheologic mechanism. The second mechanism involved an abrupt increase in upstream velocity and shear rate, followed by nitro-arginine sensitive dilation. To test whether the abrupt increase in shear could be caused by other agents known to cause edema, remote responses to histamine and thrombin were tested. Each caused an abrupt increase in velocity followed by nitro-arginine-sensitive dilation. This study shows that VEGF or agents that increase permeability can initiate an upstream velocity increase with dilation that recruits flow to the network; this is in addition to simultaneous gap junction-mediated dilation.</abstract><cop>Basel, Switzerland</cop><pub>Karger</pub><pmid>20606467</pmid><doi>10.1159/000317396</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1018-1172 |
ispartof | Journal of vascular research, 2011-01, Vol.48 (1), p.11-22 |
issn | 1018-1172 1423-0135 |
language | eng |
recordid | cdi_pascalfrancis_primary_23839970 |
source | MEDLINE; Karger Journals; Alma/SFX Local Collection |
subjects | Animals Arterioles Arterioles - drug effects Arterioles - physiology Biological and medical sciences Blood Flow Velocity - drug effects Blood Flow Velocity - physiology Capillary Permeability - drug effects Capillary Permeability - physiology Cheek - blood supply Cheek pouch Cricetinae Edema Endothelial cells Extracellular Matrix - physiology Fibroblast growth factor 2 Fibroblast Growth Factor 2 - pharmacology Fibroblast Growth Factor 2 - physiology Fundamental and applied biological sciences. Psychology Gap junctions Gap Junctions - drug effects Gap Junctions - physiology Halothane Histamine Male Permeability Phenobarbital Research Paper Rheology Shear Strength - drug effects Shear Strength - physiology Sucrose Thrombin Vascular endothelial growth factor Vascular Endothelial Growth Factor A - pharmacology Vascular Endothelial Growth Factor A - physiology Vasodilation - drug effects Vasodilation - physiology Vertebrates: cardiovascular system |
title | Downstream Exposure to Growth Factors Causes Elevated Velocity and Dilation in Arteriolar Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downstream%20Exposure%20to%20Growth%20Factors%20Causes%20Elevated%20Velocity%20and%20Dilation%20in%20Arteriolar%20Networks&rft.jtitle=Journal%20of%20vascular%20research&rft.au=Georgi,%20Melissa%20K.&rft.date=2011-01-01&rft.volume=48&rft.issue=1&rft.spage=11&rft.epage=22&rft.pages=11-22&rft.issn=1018-1172&rft.eissn=1423-0135&rft.coden=JVREE9&rft_id=info:doi/10.1159/000317396&rft_dat=%3Cproquest_pasca%3E2211976441%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=817455798&rft_id=info:pmid/20606467&rfr_iscdi=true |