EFFICIENT AND RELIABLE HIERARCHICAL ERROR ESTIMATES FOR THE DISCRETIZATION ERROR OF ELLIPTIC OBSTACLE PROBLEMS

We present and analyze novel hierarchical a posteriori error estimates for self-adjoint elliptic obstacle problems. Our approach differs from straightforward, but nonreliable estimators by an additional extra term accounting for the deviation of the discrete free boundary in the localization step. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2011-01, Vol.80 (273), p.69-88
Hauptverfasser: KORNHUBER, RALF, ZOU, QINGSONG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue 273
container_start_page 69
container_title Mathematics of computation
container_volume 80
creator KORNHUBER, RALF
ZOU, QINGSONG
description We present and analyze novel hierarchical a posteriori error estimates for self-adjoint elliptic obstacle problems. Our approach differs from straightforward, but nonreliable estimators by an additional extra term accounting for the deviation of the discrete free boundary in the localization step. We prove efficiency and reliability on a saturation assumption and a regularity condition on the underlying grid. Heuristic arguments suggest that the extra term is of higher order and preserves full locality. Numerical computations confirm our theoretical findings.
format Article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_23791422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41104692</jstor_id><sourcerecordid>41104692</sourcerecordid><originalsourceid>FETCH-LOGICAL-j137t-6944d445076610e8fb3b08768787afd8ba73409fc98d0046a265196fd21f29023</originalsourceid><addsrcrecordid>eNo9jU9rwjAchsPYYM7tIwxy2bHwS5rmzzHGdA1UK2l22UWiNaA4J62Xfft1KDu9vLwPz3uHJgSkzLhk9B5NAGiRFYLIR_Q0DAcAILwQE3SyZemMs8uA9XKOva2dntUWV8567U3ljK6x9b7x2LbBLXSwLS7HFiqL56413gb3qYNrljesKbGta7cKzuBm1gZtRt3KN6N10T6jhxSPw-7lllP0Udpgqqxu3v-usgPJxSXjirGOsQIE5wR2Mm3yDUjBpZAipk5uosgZqLRVsgNgPFJeEMVTR0miCmg-RW9X7zkO23hMfTxt98P63O-_Yv-zprlQhNE_7vXKHYbLd_-_M0JGq6L5L1b-VZQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>EFFICIENT AND RELIABLE HIERARCHICAL ERROR ESTIMATES FOR THE DISCRETIZATION ERROR OF ELLIPTIC OBSTACLE PROBLEMS</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>JSTOR Mathematics &amp; Statistics</source><creator>KORNHUBER, RALF ; ZOU, QINGSONG</creator><creatorcontrib>KORNHUBER, RALF ; ZOU, QINGSONG</creatorcontrib><description>We present and analyze novel hierarchical a posteriori error estimates for self-adjoint elliptic obstacle problems. Our approach differs from straightforward, but nonreliable estimators by an additional extra term accounting for the deviation of the discrete free boundary in the localization step. We prove efficiency and reliability on a saturation assumption and a regularity condition on the underlying grid. Heuristic arguments suggest that the extra term is of higher order and preserves full locality. Numerical computations confirm our theoretical findings.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>CODEN: MCMPAF</identifier><language>eng</language><publisher>Providence, RI: American Mathematical Society</publisher><subject>A posteriori knowledge ; Approximation ; Approximations and expansions ; Cauchy Schwarz inequality ; Coincidence ; Error rates ; Estimate reliability ; Estimators ; Exact sciences and technology ; Heuristics ; Mathematical analysis ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis ; Numerical analysis. Scientific computation ; Sciences and techniques of general use ; Triangulation</subject><ispartof>Mathematics of computation, 2011-01, Vol.80 (273), p.69-88</ispartof><rights>2011 American Mathematical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41104692$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41104692$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,4010,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23791422$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KORNHUBER, RALF</creatorcontrib><creatorcontrib>ZOU, QINGSONG</creatorcontrib><title>EFFICIENT AND RELIABLE HIERARCHICAL ERROR ESTIMATES FOR THE DISCRETIZATION ERROR OF ELLIPTIC OBSTACLE PROBLEMS</title><title>Mathematics of computation</title><description>We present and analyze novel hierarchical a posteriori error estimates for self-adjoint elliptic obstacle problems. Our approach differs from straightforward, but nonreliable estimators by an additional extra term accounting for the deviation of the discrete free boundary in the localization step. We prove efficiency and reliability on a saturation assumption and a regularity condition on the underlying grid. Heuristic arguments suggest that the extra term is of higher order and preserves full locality. Numerical computations confirm our theoretical findings.</description><subject>A posteriori knowledge</subject><subject>Approximation</subject><subject>Approximations and expansions</subject><subject>Cauchy Schwarz inequality</subject><subject>Coincidence</subject><subject>Error rates</subject><subject>Estimate reliability</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Heuristics</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Sciences and techniques of general use</subject><subject>Triangulation</subject><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9jU9rwjAchsPYYM7tIwxy2bHwS5rmzzHGdA1UK2l22UWiNaA4J62Xfft1KDu9vLwPz3uHJgSkzLhk9B5NAGiRFYLIR_Q0DAcAILwQE3SyZemMs8uA9XKOva2dntUWV8567U3ljK6x9b7x2LbBLXSwLS7HFiqL56413gb3qYNrljesKbGta7cKzuBm1gZtRt3KN6N10T6jhxSPw-7lllP0Udpgqqxu3v-usgPJxSXjirGOsQIE5wR2Mm3yDUjBpZAipk5uosgZqLRVsgNgPFJeEMVTR0miCmg-RW9X7zkO23hMfTxt98P63O-_Yv-zprlQhNE_7vXKHYbLd_-_M0JGq6L5L1b-VZQ</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>KORNHUBER, RALF</creator><creator>ZOU, QINGSONG</creator><general>American Mathematical Society</general><scope>IQODW</scope></search><sort><creationdate>20110101</creationdate><title>EFFICIENT AND RELIABLE HIERARCHICAL ERROR ESTIMATES FOR THE DISCRETIZATION ERROR OF ELLIPTIC OBSTACLE PROBLEMS</title><author>KORNHUBER, RALF ; ZOU, QINGSONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j137t-6944d445076610e8fb3b08768787afd8ba73409fc98d0046a265196fd21f29023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A posteriori knowledge</topic><topic>Approximation</topic><topic>Approximations and expansions</topic><topic>Cauchy Schwarz inequality</topic><topic>Coincidence</topic><topic>Error rates</topic><topic>Estimate reliability</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Heuristics</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Sciences and techniques of general use</topic><topic>Triangulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KORNHUBER, RALF</creatorcontrib><creatorcontrib>ZOU, QINGSONG</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KORNHUBER, RALF</au><au>ZOU, QINGSONG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EFFICIENT AND RELIABLE HIERARCHICAL ERROR ESTIMATES FOR THE DISCRETIZATION ERROR OF ELLIPTIC OBSTACLE PROBLEMS</atitle><jtitle>Mathematics of computation</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>80</volume><issue>273</issue><spage>69</spage><epage>88</epage><pages>69-88</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><coden>MCMPAF</coden><abstract>We present and analyze novel hierarchical a posteriori error estimates for self-adjoint elliptic obstacle problems. Our approach differs from straightforward, but nonreliable estimators by an additional extra term accounting for the deviation of the discrete free boundary in the localization step. We prove efficiency and reliability on a saturation assumption and a regularity condition on the underlying grid. Heuristic arguments suggest that the extra term is of higher order and preserves full locality. Numerical computations confirm our theoretical findings.</abstract><cop>Providence, RI</cop><pub>American Mathematical Society</pub><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5718
ispartof Mathematics of computation, 2011-01, Vol.80 (273), p.69-88
issn 0025-5718
1088-6842
language eng
recordid cdi_pascalfrancis_primary_23791422
source Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); EZB-FREE-00999 freely available EZB journals; JSTOR Mathematics & Statistics
subjects A posteriori knowledge
Approximation
Approximations and expansions
Cauchy Schwarz inequality
Coincidence
Error rates
Estimate reliability
Estimators
Exact sciences and technology
Heuristics
Mathematical analysis
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Numerical analysis
Numerical analysis. Scientific computation
Sciences and techniques of general use
Triangulation
title EFFICIENT AND RELIABLE HIERARCHICAL ERROR ESTIMATES FOR THE DISCRETIZATION ERROR OF ELLIPTIC OBSTACLE PROBLEMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EFFICIENT%20AND%20RELIABLE%20HIERARCHICAL%20ERROR%20ESTIMATES%20FOR%20THE%20DISCRETIZATION%20ERROR%20OF%20ELLIPTIC%20OBSTACLE%20PROBLEMS&rft.jtitle=Mathematics%20of%20computation&rft.au=KORNHUBER,%20RALF&rft.date=2011-01-01&rft.volume=80&rft.issue=273&rft.spage=69&rft.epage=88&rft.pages=69-88&rft.issn=0025-5718&rft.eissn=1088-6842&rft.coden=MCMPAF&rft_id=info:doi/&rft_dat=%3Cjstor_pasca%3E41104692%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=41104692&rfr_iscdi=true