Characterizing the Thermosphere of HD209458b with UV Transit Observations
Transmission spectroscopy at UV wavelengths is a rich and largely unexplored source of information about the upper atmospheres of extrasolar planets. So far, UV transit observations have led to the detection of atomic hydrogen, oxygen, and ionized carbon in the upper atmosphere of HD209458b. The int...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2010-11, Vol.723 (1), p.116-128 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 128 |
---|---|
container_issue | 1 |
container_start_page | 116 |
container_title | The Astrophysical journal |
container_volume | 723 |
creator | Koskinen, T. T Yelle, R. V Lavvas, P Lewis, N. K |
description | Transmission spectroscopy at UV wavelengths is a rich and largely unexplored source of information about the upper atmospheres of extrasolar planets. So far, UV transit observations have led to the detection of atomic hydrogen, oxygen, and ionized carbon in the upper atmosphere of HD209458b. The interpretation of these observations is controversial--it is not clear if the absorption arises from an escaping atmosphere interacting with the stellar radiation and stellar wind, or from the thermosphere inside the Roche lobe. In this paper, we introduce an empirical model that can be used to analyze UV transit depths of extrasolar planets. We use this model to interpret the transits of HD209458b in the H I 1216 and the O I 1304 triplet emission lines. The results indicate that the mean temperature of the thermosphere is T = 8000-11,000 K and that the H2/H dissociation front is located at pressures between p = 0.1 and 1 Delta *mbar, which correspond to a distance r 1.1 Rp from the center of the planet. The upper boundary of the model thermosphere is located at r = 2.7-3 Rp , above which the atmosphere is mostly ionized. We find that the H I transit depth in the wings of the H Ly Delta *a line reflects the optical depth of the thermosphere, but that the atmosphere also overflows the Roche lobe. By assuming a solar mixing ratio of oxygen, we obtain an O I transit depth that is statistically consistent with the observations. An O I transit depth comparable to the H I transit depth is possible if the atmosphere is undergoing fast hydrodynamic escape, the O/H ratio is supersolar, or if a significant quantity of neutral oxygen is found outside the Roche lobe. We find that the observations can be explained solely by absorption in the upper atmosphere and extended clouds of energetic neutral atoms or atoms strongly perturbed by radiation pressure are not required. Due to the large uncertainty in the data, repeated observations are necessary to better constrain the O I transit depths and thus the composition of the thermosphere. |
doi_str_mv | 10.1088/0004-637X/723/1/116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_pascalfrancis_primary_23394670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671381584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-2e08bf0e1bd7a20d6ea2d4e911a812a13c896bdffd50fc013d54c68cd6e678c83</originalsourceid><addsrcrecordid>eNqNkU9r3DAQxUVpoNskn6AXQygNAWc1kizJx7L5C4FcNqE3IctSrbJruZKSkH76yGzIJaX0NAz83pvhPYS-AD4FLOUSY8xqTsWPpSB0CUsA_gEtoKGyZrQRH9HijfiEPqf0a15J2y7Q9WrQUZtso__jx59VHmy1HmzchjSVYavgqqszglvWyK568nmo7u6rddRj8rm67ZKNjzr7MKYDtOf0JtnD17mP7i7O16ur-ub28nr1_aY2jPFcE4tl57CFrhea4J5bTXpmWwAtgWigRra8653rG-wMBto3zHBpCsiFNJLuo6Odb0jZq2R8tmYwYRytyYoA44IALtS3HTXF8PvBpqy2Phm72ejRhoekWoJFS7kQhTz-JwlcAJXQSFZQukNNDClF69QU_VbHZwVYzUWoOVc1x6xKEQpUKaKovr4e0MnojSvZGZ_epITStjw9v3y643yY_tP45L3gL6CaekdfALVToYM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671381584</pqid></control><display><type>article</type><title>Characterizing the Thermosphere of HD209458b with UV Transit Observations</title><source>IOP Publishing Free Content</source><creator>Koskinen, T. T ; Yelle, R. V ; Lavvas, P ; Lewis, N. K</creator><creatorcontrib>Koskinen, T. T ; Yelle, R. V ; Lavvas, P ; Lewis, N. K</creatorcontrib><description>Transmission spectroscopy at UV wavelengths is a rich and largely unexplored source of information about the upper atmospheres of extrasolar planets. So far, UV transit observations have led to the detection of atomic hydrogen, oxygen, and ionized carbon in the upper atmosphere of HD209458b. The interpretation of these observations is controversial--it is not clear if the absorption arises from an escaping atmosphere interacting with the stellar radiation and stellar wind, or from the thermosphere inside the Roche lobe. In this paper, we introduce an empirical model that can be used to analyze UV transit depths of extrasolar planets. We use this model to interpret the transits of HD209458b in the H I 1216 and the O I 1304 triplet emission lines. The results indicate that the mean temperature of the thermosphere is T = 8000-11,000 K and that the H2/H dissociation front is located at pressures between p = 0.1 and 1 Delta *mbar, which correspond to a distance r 1.1 Rp from the center of the planet. The upper boundary of the model thermosphere is located at r = 2.7-3 Rp , above which the atmosphere is mostly ionized. We find that the H I transit depth in the wings of the H Ly Delta *a line reflects the optical depth of the thermosphere, but that the atmosphere also overflows the Roche lobe. By assuming a solar mixing ratio of oxygen, we obtain an O I transit depth that is statistically consistent with the observations. An O I transit depth comparable to the H I transit depth is possible if the atmosphere is undergoing fast hydrodynamic escape, the O/H ratio is supersolar, or if a significant quantity of neutral oxygen is found outside the Roche lobe. We find that the observations can be explained solely by absorption in the upper atmosphere and extended clouds of energetic neutral atoms or atoms strongly perturbed by radiation pressure are not required. Due to the large uncertainty in the data, repeated observations are necessary to better constrain the O I transit depths and thus the composition of the thermosphere.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/723/1/116</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>ABSORPTION ; Astronomy ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; ATMOSPHERES ; CARBON ; Clouds ; DIMENSIONLESS NUMBERS ; EARTH ATMOSPHERE ; Earth, ocean, space ; ELECTROMAGNETIC RADIATION ; ELEMENTS ; EMISSION ; Exact sciences and technology ; Extrasolar planets ; FLUID MECHANICS ; HYDRODYNAMICS ; HYDROGEN ; Lobes ; MECHANICS ; MIXING RATIO ; NONMETALS ; OXYGEN ; PLANETARY ATMOSPHERES ; PLANETS ; POTENTIALS ; RADIATION PRESSURE ; RADIATIONS ; ROCHE EQUIPOTENTIALS ; SORPTION ; STELLAR ACTIVITY ; STELLAR RADIATION ; STELLAR WINDS ; THERMOSPHERE ; Transit ; ULTRAVIOLET RADIATION ; Upper atmosphere</subject><ispartof>The Astrophysical journal, 2010-11, Vol.723 (1), p.116-128</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-2e08bf0e1bd7a20d6ea2d4e911a812a13c896bdffd50fc013d54c68cd6e678c83</citedby><cites>FETCH-LOGICAL-c446t-2e08bf0e1bd7a20d6ea2d4e911a812a13c896bdffd50fc013d54c68cd6e678c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/723/1/116/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27605,27901,27902,53906</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/0004-637X/723/1/116$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23394670$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21467210$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Koskinen, T. T</creatorcontrib><creatorcontrib>Yelle, R. V</creatorcontrib><creatorcontrib>Lavvas, P</creatorcontrib><creatorcontrib>Lewis, N. K</creatorcontrib><title>Characterizing the Thermosphere of HD209458b with UV Transit Observations</title><title>The Astrophysical journal</title><description>Transmission spectroscopy at UV wavelengths is a rich and largely unexplored source of information about the upper atmospheres of extrasolar planets. So far, UV transit observations have led to the detection of atomic hydrogen, oxygen, and ionized carbon in the upper atmosphere of HD209458b. The interpretation of these observations is controversial--it is not clear if the absorption arises from an escaping atmosphere interacting with the stellar radiation and stellar wind, or from the thermosphere inside the Roche lobe. In this paper, we introduce an empirical model that can be used to analyze UV transit depths of extrasolar planets. We use this model to interpret the transits of HD209458b in the H I 1216 and the O I 1304 triplet emission lines. The results indicate that the mean temperature of the thermosphere is T = 8000-11,000 K and that the H2/H dissociation front is located at pressures between p = 0.1 and 1 Delta *mbar, which correspond to a distance r 1.1 Rp from the center of the planet. The upper boundary of the model thermosphere is located at r = 2.7-3 Rp , above which the atmosphere is mostly ionized. We find that the H I transit depth in the wings of the H Ly Delta *a line reflects the optical depth of the thermosphere, but that the atmosphere also overflows the Roche lobe. By assuming a solar mixing ratio of oxygen, we obtain an O I transit depth that is statistically consistent with the observations. An O I transit depth comparable to the H I transit depth is possible if the atmosphere is undergoing fast hydrodynamic escape, the O/H ratio is supersolar, or if a significant quantity of neutral oxygen is found outside the Roche lobe. We find that the observations can be explained solely by absorption in the upper atmosphere and extended clouds of energetic neutral atoms or atoms strongly perturbed by radiation pressure are not required. Due to the large uncertainty in the data, repeated observations are necessary to better constrain the O I transit depths and thus the composition of the thermosphere.</description><subject>ABSORPTION</subject><subject>Astronomy</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>ATMOSPHERES</subject><subject>CARBON</subject><subject>Clouds</subject><subject>DIMENSIONLESS NUMBERS</subject><subject>EARTH ATMOSPHERE</subject><subject>Earth, ocean, space</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>ELEMENTS</subject><subject>EMISSION</subject><subject>Exact sciences and technology</subject><subject>Extrasolar planets</subject><subject>FLUID MECHANICS</subject><subject>HYDRODYNAMICS</subject><subject>HYDROGEN</subject><subject>Lobes</subject><subject>MECHANICS</subject><subject>MIXING RATIO</subject><subject>NONMETALS</subject><subject>OXYGEN</subject><subject>PLANETARY ATMOSPHERES</subject><subject>PLANETS</subject><subject>POTENTIALS</subject><subject>RADIATION PRESSURE</subject><subject>RADIATIONS</subject><subject>ROCHE EQUIPOTENTIALS</subject><subject>SORPTION</subject><subject>STELLAR ACTIVITY</subject><subject>STELLAR RADIATION</subject><subject>STELLAR WINDS</subject><subject>THERMOSPHERE</subject><subject>Transit</subject><subject>ULTRAVIOLET RADIATION</subject><subject>Upper atmosphere</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkU9r3DAQxUVpoNskn6AXQygNAWc1kizJx7L5C4FcNqE3IctSrbJruZKSkH76yGzIJaX0NAz83pvhPYS-AD4FLOUSY8xqTsWPpSB0CUsA_gEtoKGyZrQRH9HijfiEPqf0a15J2y7Q9WrQUZtso__jx59VHmy1HmzchjSVYavgqqszglvWyK568nmo7u6rddRj8rm67ZKNjzr7MKYDtOf0JtnD17mP7i7O16ur-ub28nr1_aY2jPFcE4tl57CFrhea4J5bTXpmWwAtgWigRra8653rG-wMBto3zHBpCsiFNJLuo6Odb0jZq2R8tmYwYRytyYoA44IALtS3HTXF8PvBpqy2Phm72ejRhoekWoJFS7kQhTz-JwlcAJXQSFZQukNNDClF69QU_VbHZwVYzUWoOVc1x6xKEQpUKaKovr4e0MnojSvZGZ_epITStjw9v3y643yY_tP45L3gL6CaekdfALVToYM</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Koskinen, T. T</creator><creator>Yelle, R. V</creator><creator>Lavvas, P</creator><creator>Lewis, N. K</creator><general>IOP Publishing</general><general>IOP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>7TV</scope><scope>C1K</scope><scope>KL.</scope><scope>OTOTI</scope></search><sort><creationdate>20101101</creationdate><title>Characterizing the Thermosphere of HD209458b with UV Transit Observations</title><author>Koskinen, T. T ; Yelle, R. V ; Lavvas, P ; Lewis, N. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-2e08bf0e1bd7a20d6ea2d4e911a812a13c896bdffd50fc013d54c68cd6e678c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ABSORPTION</topic><topic>Astronomy</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>ATMOSPHERES</topic><topic>CARBON</topic><topic>Clouds</topic><topic>DIMENSIONLESS NUMBERS</topic><topic>EARTH ATMOSPHERE</topic><topic>Earth, ocean, space</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>ELEMENTS</topic><topic>EMISSION</topic><topic>Exact sciences and technology</topic><topic>Extrasolar planets</topic><topic>FLUID MECHANICS</topic><topic>HYDRODYNAMICS</topic><topic>HYDROGEN</topic><topic>Lobes</topic><topic>MECHANICS</topic><topic>MIXING RATIO</topic><topic>NONMETALS</topic><topic>OXYGEN</topic><topic>PLANETARY ATMOSPHERES</topic><topic>PLANETS</topic><topic>POTENTIALS</topic><topic>RADIATION PRESSURE</topic><topic>RADIATIONS</topic><topic>ROCHE EQUIPOTENTIALS</topic><topic>SORPTION</topic><topic>STELLAR ACTIVITY</topic><topic>STELLAR RADIATION</topic><topic>STELLAR WINDS</topic><topic>THERMOSPHERE</topic><topic>Transit</topic><topic>ULTRAVIOLET RADIATION</topic><topic>Upper atmosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koskinen, T. T</creatorcontrib><creatorcontrib>Yelle, R. V</creatorcontrib><creatorcontrib>Lavvas, P</creatorcontrib><creatorcontrib>Lewis, N. K</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koskinen, T. T</au><au>Yelle, R. V</au><au>Lavvas, P</au><au>Lewis, N. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing the Thermosphere of HD209458b with UV Transit Observations</atitle><jtitle>The Astrophysical journal</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>723</volume><issue>1</issue><spage>116</spage><epage>128</epage><pages>116-128</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>Transmission spectroscopy at UV wavelengths is a rich and largely unexplored source of information about the upper atmospheres of extrasolar planets. So far, UV transit observations have led to the detection of atomic hydrogen, oxygen, and ionized carbon in the upper atmosphere of HD209458b. The interpretation of these observations is controversial--it is not clear if the absorption arises from an escaping atmosphere interacting with the stellar radiation and stellar wind, or from the thermosphere inside the Roche lobe. In this paper, we introduce an empirical model that can be used to analyze UV transit depths of extrasolar planets. We use this model to interpret the transits of HD209458b in the H I 1216 and the O I 1304 triplet emission lines. The results indicate that the mean temperature of the thermosphere is T = 8000-11,000 K and that the H2/H dissociation front is located at pressures between p = 0.1 and 1 Delta *mbar, which correspond to a distance r 1.1 Rp from the center of the planet. The upper boundary of the model thermosphere is located at r = 2.7-3 Rp , above which the atmosphere is mostly ionized. We find that the H I transit depth in the wings of the H Ly Delta *a line reflects the optical depth of the thermosphere, but that the atmosphere also overflows the Roche lobe. By assuming a solar mixing ratio of oxygen, we obtain an O I transit depth that is statistically consistent with the observations. An O I transit depth comparable to the H I transit depth is possible if the atmosphere is undergoing fast hydrodynamic escape, the O/H ratio is supersolar, or if a significant quantity of neutral oxygen is found outside the Roche lobe. We find that the observations can be explained solely by absorption in the upper atmosphere and extended clouds of energetic neutral atoms or atoms strongly perturbed by radiation pressure are not required. Due to the large uncertainty in the data, repeated observations are necessary to better constrain the O I transit depths and thus the composition of the thermosphere.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0004-637X/723/1/116</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2010-11, Vol.723 (1), p.116-128 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_pascalfrancis_primary_23394670 |
source | IOP Publishing Free Content |
subjects | ABSORPTION Astronomy ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ATMOSPHERES CARBON Clouds DIMENSIONLESS NUMBERS EARTH ATMOSPHERE Earth, ocean, space ELECTROMAGNETIC RADIATION ELEMENTS EMISSION Exact sciences and technology Extrasolar planets FLUID MECHANICS HYDRODYNAMICS HYDROGEN Lobes MECHANICS MIXING RATIO NONMETALS OXYGEN PLANETARY ATMOSPHERES PLANETS POTENTIALS RADIATION PRESSURE RADIATIONS ROCHE EQUIPOTENTIALS SORPTION STELLAR ACTIVITY STELLAR RADIATION STELLAR WINDS THERMOSPHERE Transit ULTRAVIOLET RADIATION Upper atmosphere |
title | Characterizing the Thermosphere of HD209458b with UV Transit Observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A52%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20the%20Thermosphere%20of%20HD209458b%20with%20UV%20Transit%20Observations&rft.jtitle=The%20Astrophysical%20journal&rft.au=Koskinen,%20T.%20T&rft.date=2010-11-01&rft.volume=723&rft.issue=1&rft.spage=116&rft.epage=128&rft.pages=116-128&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1088/0004-637X/723/1/116&rft_dat=%3Cproquest_O3W%3E1671381584%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671381584&rft_id=info:pmid/&rfr_iscdi=true |