Approximate Bayesian Computation: A Nonparametric Perspective
Approximate Bayesian Computation is a family of likelihood-free inference techniques that are well suited to models defined in terms of a stochastic generating mechanism. In a nutshell, Approximate Bayesian Computation proceeds by computing summary statistics s obs from the data and simulating summa...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2010-09, Vol.105 (491), p.1178-1187 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1187 |
---|---|
container_issue | 491 |
container_start_page | 1178 |
container_title | Journal of the American Statistical Association |
container_volume | 105 |
creator | Blum, Michael G. B. |
description | Approximate Bayesian Computation is a family of likelihood-free inference techniques that are well suited to models defined in terms of a stochastic generating mechanism. In a nutshell, Approximate Bayesian Computation proceeds by computing summary statistics s
obs
from the data and simulating summary statistics for different values of the parameter Θ. The posterior distribution is then approximated by an estimator of the conditional density g(Θ|s
obs
). In this paper, we derive the asymptotic bias and variance of the standard estimators of the posterior distribution which are based on rejection sampling and linear adjustment. Additionally, we introduce an original estimator of the posterior distribution based on quadratic adjustment and we show that its bias contains a fewer number of terms than the estimator with linear adjustment. Although we find that the estimators with adjustment are not universally superior to the estimator based on rejection sampling, we find that they can achieve better performance when there is a nearly homoscedastic relationship between the summary statistics and the parameter of interest. To make this relationship as homoscedastic as possible, we propose to use transformations of the summary statistics. In different examples borrowed from the population genetics and epidemiological literature, we show the potential of the methods with adjustment and of the transformations of the summary statistics. Supplemental materials containing the details of the proofs are available online. |
doi_str_mv | 10.1198/jasa.2010.tm09448 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_23392888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27920142</jstor_id><sourcerecordid>27920142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643t-8ff7a32bc8245c0ca1ace2e0ca22142d2b5fb6dcf1ae76118c6b71a7b59769443</originalsourceid><addsrcrecordid>eNp1kV1r2zAUhsXooGm2H9CLgtkYZRfu9GVLHttFGrZ1ELZedNA7cazITMG2XElpl39fGWcZDCJd6OM85_C-vAidE3xFSCU_bCDAFcXpGTtccS5foBkpmMip4PcnaIZJSXPCi-oUnYWwwWkJKWfo82IYvPtjO4gmu4adCRb6bOm6YRshWtd_zBbZD9cP4KEz0Vud3RofBqOjfTSv0MsG2mBe7885-vX1y93yJl_9_PZ9uVjluuQs5rJpBDBaa0l5obEGAtpQky6UEk7XtC6aulzrhoARJSFSl7UgIOqiEmUyw-bo_TT3N7Rq8Emt3ykHVt0sVmr8w5gJxjB5LBJ7ObHJ18PWhKg6G7RpW-iN2wYluaBpp445evMfuXFb3ycjSuIkVQrOEvT2GJTMCMpKTEaBZKK0dyF40xxUEqzGgNQYkBoDUvuAUs-7_WQIGtrGQ69tODRSxioq5chdTNwmROf_1UWVxnGa6p-muu0b5zt4cr5dqwi71vm_Q9lxGc9rOq3j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457236014</pqid></control><display><type>article</type><title>Approximate Bayesian Computation: A Nonparametric Perspective</title><source>JSTOR Mathematics and Statistics</source><source>Jstor Complete Legacy</source><source>Taylor & Francis Online</source><creator>Blum, Michael G. B.</creator><creatorcontrib>Blum, Michael G. B.</creatorcontrib><description>Approximate Bayesian Computation is a family of likelihood-free inference techniques that are well suited to models defined in terms of a stochastic generating mechanism. In a nutshell, Approximate Bayesian Computation proceeds by computing summary statistics s
obs
from the data and simulating summary statistics for different values of the parameter Θ. The posterior distribution is then approximated by an estimator of the conditional density g(Θ|s
obs
). In this paper, we derive the asymptotic bias and variance of the standard estimators of the posterior distribution which are based on rejection sampling and linear adjustment. Additionally, we introduce an original estimator of the posterior distribution based on quadratic adjustment and we show that its bias contains a fewer number of terms than the estimator with linear adjustment. Although we find that the estimators with adjustment are not universally superior to the estimator based on rejection sampling, we find that they can achieve better performance when there is a nearly homoscedastic relationship between the summary statistics and the parameter of interest. To make this relationship as homoscedastic as possible, we propose to use transformations of the summary statistics. In different examples borrowed from the population genetics and epidemiological literature, we show the potential of the methods with adjustment and of the transformations of the summary statistics. Supplemental materials containing the details of the proofs are available online.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1198/jasa.2010.tm09448</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor & Francis</publisher><subject>Adjustment ; Applications ; Asymptotic methods ; Bayesian analysis ; Bayesian method ; Bias ; Computation ; Computational methods ; Conditional density estimation ; Data analysis ; Density ; Density estimation ; Descriptive statistics ; Distribution theory ; Epidemiology ; Estimation bias ; Estimators ; Exact sciences and technology ; General topics ; Genetic mutation ; Genetics ; Implicit statistical model ; Inference ; Kernel regression ; Linear regression ; Local polynomial ; Mathematics ; Medical sciences ; Nonparametric inference ; Nonparametric statistics ; Parameters ; Population genetics ; Probability and statistics ; Regression analysis ; Rejection ; Sampling ; Sciences and techniques of general use ; Simulation-based inference ; Statistical data ; Statistical methods ; Statistical variance ; Statistics ; Statistics Theory ; Theory and Methods</subject><ispartof>Journal of the American Statistical Association, 2010-09, Vol.105 (491), p.1178-1187</ispartof><rights>2010 American Statistical Association 2010</rights><rights>2010 American Statistical Association</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Statistical Association Sep 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c643t-8ff7a32bc8245c0ca1ace2e0ca22142d2b5fb6dcf1ae76118c6b71a7b59769443</citedby><cites>FETCH-LOGICAL-c643t-8ff7a32bc8245c0ca1ace2e0ca22142d2b5fb6dcf1ae76118c6b71a7b59769443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27920142$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27920142$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,27903,27904,57995,57999,58228,58232,59623,60412</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23392888$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00373301$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Blum, Michael G. B.</creatorcontrib><title>Approximate Bayesian Computation: A Nonparametric Perspective</title><title>Journal of the American Statistical Association</title><description>Approximate Bayesian Computation is a family of likelihood-free inference techniques that are well suited to models defined in terms of a stochastic generating mechanism. In a nutshell, Approximate Bayesian Computation proceeds by computing summary statistics s
obs
from the data and simulating summary statistics for different values of the parameter Θ. The posterior distribution is then approximated by an estimator of the conditional density g(Θ|s
obs
). In this paper, we derive the asymptotic bias and variance of the standard estimators of the posterior distribution which are based on rejection sampling and linear adjustment. Additionally, we introduce an original estimator of the posterior distribution based on quadratic adjustment and we show that its bias contains a fewer number of terms than the estimator with linear adjustment. Although we find that the estimators with adjustment are not universally superior to the estimator based on rejection sampling, we find that they can achieve better performance when there is a nearly homoscedastic relationship between the summary statistics and the parameter of interest. To make this relationship as homoscedastic as possible, we propose to use transformations of the summary statistics. In different examples borrowed from the population genetics and epidemiological literature, we show the potential of the methods with adjustment and of the transformations of the summary statistics. Supplemental materials containing the details of the proofs are available online.</description><subject>Adjustment</subject><subject>Applications</subject><subject>Asymptotic methods</subject><subject>Bayesian analysis</subject><subject>Bayesian method</subject><subject>Bias</subject><subject>Computation</subject><subject>Computational methods</subject><subject>Conditional density estimation</subject><subject>Data analysis</subject><subject>Density</subject><subject>Density estimation</subject><subject>Descriptive statistics</subject><subject>Distribution theory</subject><subject>Epidemiology</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Genetic mutation</subject><subject>Genetics</subject><subject>Implicit statistical model</subject><subject>Inference</subject><subject>Kernel regression</subject><subject>Linear regression</subject><subject>Local polynomial</subject><subject>Mathematics</subject><subject>Medical sciences</subject><subject>Nonparametric inference</subject><subject>Nonparametric statistics</subject><subject>Parameters</subject><subject>Population genetics</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Rejection</subject><subject>Sampling</subject><subject>Sciences and techniques of general use</subject><subject>Simulation-based inference</subject><subject>Statistical data</subject><subject>Statistical methods</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Statistics Theory</subject><subject>Theory and Methods</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kV1r2zAUhsXooGm2H9CLgtkYZRfu9GVLHttFGrZ1ELZedNA7cazITMG2XElpl39fGWcZDCJd6OM85_C-vAidE3xFSCU_bCDAFcXpGTtccS5foBkpmMip4PcnaIZJSXPCi-oUnYWwwWkJKWfo82IYvPtjO4gmu4adCRb6bOm6YRshWtd_zBbZD9cP4KEz0Vud3RofBqOjfTSv0MsG2mBe7885-vX1y93yJl_9_PZ9uVjluuQs5rJpBDBaa0l5obEGAtpQky6UEk7XtC6aulzrhoARJSFSl7UgIOqiEmUyw-bo_TT3N7Rq8Emt3ykHVt0sVmr8w5gJxjB5LBJ7ObHJ18PWhKg6G7RpW-iN2wYluaBpp445evMfuXFb3ycjSuIkVQrOEvT2GJTMCMpKTEaBZKK0dyF40xxUEqzGgNQYkBoDUvuAUs-7_WQIGtrGQ69tODRSxioq5chdTNwmROf_1UWVxnGa6p-muu0b5zt4cr5dqwi71vm_Q9lxGc9rOq3j</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Blum, Michael G. B.</creator><general>Taylor & Francis</general><general>American Statistical Association</general><general>Taylor & Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20100901</creationdate><title>Approximate Bayesian Computation: A Nonparametric Perspective</title><author>Blum, Michael G. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643t-8ff7a32bc8245c0ca1ace2e0ca22142d2b5fb6dcf1ae76118c6b71a7b59769443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adjustment</topic><topic>Applications</topic><topic>Asymptotic methods</topic><topic>Bayesian analysis</topic><topic>Bayesian method</topic><topic>Bias</topic><topic>Computation</topic><topic>Computational methods</topic><topic>Conditional density estimation</topic><topic>Data analysis</topic><topic>Density</topic><topic>Density estimation</topic><topic>Descriptive statistics</topic><topic>Distribution theory</topic><topic>Epidemiology</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Genetic mutation</topic><topic>Genetics</topic><topic>Implicit statistical model</topic><topic>Inference</topic><topic>Kernel regression</topic><topic>Linear regression</topic><topic>Local polynomial</topic><topic>Mathematics</topic><topic>Medical sciences</topic><topic>Nonparametric inference</topic><topic>Nonparametric statistics</topic><topic>Parameters</topic><topic>Population genetics</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Rejection</topic><topic>Sampling</topic><topic>Sciences and techniques of general use</topic><topic>Simulation-based inference</topic><topic>Statistical data</topic><topic>Statistical methods</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Statistics Theory</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blum, Michael G. B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blum, Michael G. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate Bayesian Computation: A Nonparametric Perspective</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>105</volume><issue>491</issue><spage>1178</spage><epage>1187</epage><pages>1178-1187</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>Approximate Bayesian Computation is a family of likelihood-free inference techniques that are well suited to models defined in terms of a stochastic generating mechanism. In a nutshell, Approximate Bayesian Computation proceeds by computing summary statistics s
obs
from the data and simulating summary statistics for different values of the parameter Θ. The posterior distribution is then approximated by an estimator of the conditional density g(Θ|s
obs
). In this paper, we derive the asymptotic bias and variance of the standard estimators of the posterior distribution which are based on rejection sampling and linear adjustment. Additionally, we introduce an original estimator of the posterior distribution based on quadratic adjustment and we show that its bias contains a fewer number of terms than the estimator with linear adjustment. Although we find that the estimators with adjustment are not universally superior to the estimator based on rejection sampling, we find that they can achieve better performance when there is a nearly homoscedastic relationship between the summary statistics and the parameter of interest. To make this relationship as homoscedastic as possible, we propose to use transformations of the summary statistics. In different examples borrowed from the population genetics and epidemiological literature, we show the potential of the methods with adjustment and of the transformations of the summary statistics. Supplemental materials containing the details of the proofs are available online.</abstract><cop>Alexandria, VA</cop><pub>Taylor & Francis</pub><doi>10.1198/jasa.2010.tm09448</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 2010-09, Vol.105 (491), p.1178-1187 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_pascalfrancis_primary_23392888 |
source | JSTOR Mathematics and Statistics; Jstor Complete Legacy; Taylor & Francis Online |
subjects | Adjustment Applications Asymptotic methods Bayesian analysis Bayesian method Bias Computation Computational methods Conditional density estimation Data analysis Density Density estimation Descriptive statistics Distribution theory Epidemiology Estimation bias Estimators Exact sciences and technology General topics Genetic mutation Genetics Implicit statistical model Inference Kernel regression Linear regression Local polynomial Mathematics Medical sciences Nonparametric inference Nonparametric statistics Parameters Population genetics Probability and statistics Regression analysis Rejection Sampling Sciences and techniques of general use Simulation-based inference Statistical data Statistical methods Statistical variance Statistics Statistics Theory Theory and Methods |
title | Approximate Bayesian Computation: A Nonparametric Perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20Bayesian%20Computation:%20A%20Nonparametric%20Perspective&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Blum,%20Michael%20G.%20B.&rft.date=2010-09-01&rft.volume=105&rft.issue=491&rft.spage=1178&rft.epage=1187&rft.pages=1178-1187&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1198/jasa.2010.tm09448&rft_dat=%3Cjstor_pasca%3E27920142%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457236014&rft_id=info:pmid/&rft_jstor_id=27920142&rfr_iscdi=true |