Approximate Bayesian Computation: A Nonparametric Perspective

Approximate Bayesian Computation is a family of likelihood-free inference techniques that are well suited to models defined in terms of a stochastic generating mechanism. In a nutshell, Approximate Bayesian Computation proceeds by computing summary statistics s obs from the data and simulating summa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2010-09, Vol.105 (491), p.1178-1187
1. Verfasser: Blum, Michael G. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1187
container_issue 491
container_start_page 1178
container_title Journal of the American Statistical Association
container_volume 105
creator Blum, Michael G. B.
description Approximate Bayesian Computation is a family of likelihood-free inference techniques that are well suited to models defined in terms of a stochastic generating mechanism. In a nutshell, Approximate Bayesian Computation proceeds by computing summary statistics s obs from the data and simulating summary statistics for different values of the parameter Θ. The posterior distribution is then approximated by an estimator of the conditional density g(Θ|s obs ). In this paper, we derive the asymptotic bias and variance of the standard estimators of the posterior distribution which are based on rejection sampling and linear adjustment. Additionally, we introduce an original estimator of the posterior distribution based on quadratic adjustment and we show that its bias contains a fewer number of terms than the estimator with linear adjustment. Although we find that the estimators with adjustment are not universally superior to the estimator based on rejection sampling, we find that they can achieve better performance when there is a nearly homoscedastic relationship between the summary statistics and the parameter of interest. To make this relationship as homoscedastic as possible, we propose to use transformations of the summary statistics. In different examples borrowed from the population genetics and epidemiological literature, we show the potential of the methods with adjustment and of the transformations of the summary statistics. Supplemental materials containing the details of the proofs are available online.
doi_str_mv 10.1198/jasa.2010.tm09448
format Article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_23392888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27920142</jstor_id><sourcerecordid>27920142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643t-8ff7a32bc8245c0ca1ace2e0ca22142d2b5fb6dcf1ae76118c6b71a7b59769443</originalsourceid><addsrcrecordid>eNp1kV1r2zAUhsXooGm2H9CLgtkYZRfu9GVLHttFGrZ1ELZedNA7cazITMG2XElpl39fGWcZDCJd6OM85_C-vAidE3xFSCU_bCDAFcXpGTtccS5foBkpmMip4PcnaIZJSXPCi-oUnYWwwWkJKWfo82IYvPtjO4gmu4adCRb6bOm6YRshWtd_zBbZD9cP4KEz0Vud3RofBqOjfTSv0MsG2mBe7885-vX1y93yJl_9_PZ9uVjluuQs5rJpBDBaa0l5obEGAtpQky6UEk7XtC6aulzrhoARJSFSl7UgIOqiEmUyw-bo_TT3N7Rq8Emt3ykHVt0sVmr8w5gJxjB5LBJ7ObHJ18PWhKg6G7RpW-iN2wYluaBpp445evMfuXFb3ycjSuIkVQrOEvT2GJTMCMpKTEaBZKK0dyF40xxUEqzGgNQYkBoDUvuAUs-7_WQIGtrGQ69tODRSxioq5chdTNwmROf_1UWVxnGa6p-muu0b5zt4cr5dqwi71vm_Q9lxGc9rOq3j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457236014</pqid></control><display><type>article</type><title>Approximate Bayesian Computation: A Nonparametric Perspective</title><source>JSTOR Mathematics and Statistics</source><source>Jstor Complete Legacy</source><source>Taylor &amp; Francis Online</source><creator>Blum, Michael G. B.</creator><creatorcontrib>Blum, Michael G. B.</creatorcontrib><description>Approximate Bayesian Computation is a family of likelihood-free inference techniques that are well suited to models defined in terms of a stochastic generating mechanism. In a nutshell, Approximate Bayesian Computation proceeds by computing summary statistics s obs from the data and simulating summary statistics for different values of the parameter Θ. The posterior distribution is then approximated by an estimator of the conditional density g(Θ|s obs ). In this paper, we derive the asymptotic bias and variance of the standard estimators of the posterior distribution which are based on rejection sampling and linear adjustment. Additionally, we introduce an original estimator of the posterior distribution based on quadratic adjustment and we show that its bias contains a fewer number of terms than the estimator with linear adjustment. Although we find that the estimators with adjustment are not universally superior to the estimator based on rejection sampling, we find that they can achieve better performance when there is a nearly homoscedastic relationship between the summary statistics and the parameter of interest. To make this relationship as homoscedastic as possible, we propose to use transformations of the summary statistics. In different examples borrowed from the population genetics and epidemiological literature, we show the potential of the methods with adjustment and of the transformations of the summary statistics. Supplemental materials containing the details of the proofs are available online.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1198/jasa.2010.tm09448</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor &amp; Francis</publisher><subject>Adjustment ; Applications ; Asymptotic methods ; Bayesian analysis ; Bayesian method ; Bias ; Computation ; Computational methods ; Conditional density estimation ; Data analysis ; Density ; Density estimation ; Descriptive statistics ; Distribution theory ; Epidemiology ; Estimation bias ; Estimators ; Exact sciences and technology ; General topics ; Genetic mutation ; Genetics ; Implicit statistical model ; Inference ; Kernel regression ; Linear regression ; Local polynomial ; Mathematics ; Medical sciences ; Nonparametric inference ; Nonparametric statistics ; Parameters ; Population genetics ; Probability and statistics ; Regression analysis ; Rejection ; Sampling ; Sciences and techniques of general use ; Simulation-based inference ; Statistical data ; Statistical methods ; Statistical variance ; Statistics ; Statistics Theory ; Theory and Methods</subject><ispartof>Journal of the American Statistical Association, 2010-09, Vol.105 (491), p.1178-1187</ispartof><rights>2010 American Statistical Association 2010</rights><rights>2010 American Statistical Association</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Statistical Association Sep 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c643t-8ff7a32bc8245c0ca1ace2e0ca22142d2b5fb6dcf1ae76118c6b71a7b59769443</citedby><cites>FETCH-LOGICAL-c643t-8ff7a32bc8245c0ca1ace2e0ca22142d2b5fb6dcf1ae76118c6b71a7b59769443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27920142$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27920142$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,27903,27904,57995,57999,58228,58232,59623,60412</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23392888$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00373301$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Blum, Michael G. B.</creatorcontrib><title>Approximate Bayesian Computation: A Nonparametric Perspective</title><title>Journal of the American Statistical Association</title><description>Approximate Bayesian Computation is a family of likelihood-free inference techniques that are well suited to models defined in terms of a stochastic generating mechanism. In a nutshell, Approximate Bayesian Computation proceeds by computing summary statistics s obs from the data and simulating summary statistics for different values of the parameter Θ. The posterior distribution is then approximated by an estimator of the conditional density g(Θ|s obs ). In this paper, we derive the asymptotic bias and variance of the standard estimators of the posterior distribution which are based on rejection sampling and linear adjustment. Additionally, we introduce an original estimator of the posterior distribution based on quadratic adjustment and we show that its bias contains a fewer number of terms than the estimator with linear adjustment. Although we find that the estimators with adjustment are not universally superior to the estimator based on rejection sampling, we find that they can achieve better performance when there is a nearly homoscedastic relationship between the summary statistics and the parameter of interest. To make this relationship as homoscedastic as possible, we propose to use transformations of the summary statistics. In different examples borrowed from the population genetics and epidemiological literature, we show the potential of the methods with adjustment and of the transformations of the summary statistics. Supplemental materials containing the details of the proofs are available online.</description><subject>Adjustment</subject><subject>Applications</subject><subject>Asymptotic methods</subject><subject>Bayesian analysis</subject><subject>Bayesian method</subject><subject>Bias</subject><subject>Computation</subject><subject>Computational methods</subject><subject>Conditional density estimation</subject><subject>Data analysis</subject><subject>Density</subject><subject>Density estimation</subject><subject>Descriptive statistics</subject><subject>Distribution theory</subject><subject>Epidemiology</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Genetic mutation</subject><subject>Genetics</subject><subject>Implicit statistical model</subject><subject>Inference</subject><subject>Kernel regression</subject><subject>Linear regression</subject><subject>Local polynomial</subject><subject>Mathematics</subject><subject>Medical sciences</subject><subject>Nonparametric inference</subject><subject>Nonparametric statistics</subject><subject>Parameters</subject><subject>Population genetics</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Rejection</subject><subject>Sampling</subject><subject>Sciences and techniques of general use</subject><subject>Simulation-based inference</subject><subject>Statistical data</subject><subject>Statistical methods</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Statistics Theory</subject><subject>Theory and Methods</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kV1r2zAUhsXooGm2H9CLgtkYZRfu9GVLHttFGrZ1ELZedNA7cazITMG2XElpl39fGWcZDCJd6OM85_C-vAidE3xFSCU_bCDAFcXpGTtccS5foBkpmMip4PcnaIZJSXPCi-oUnYWwwWkJKWfo82IYvPtjO4gmu4adCRb6bOm6YRshWtd_zBbZD9cP4KEz0Vud3RofBqOjfTSv0MsG2mBe7885-vX1y93yJl_9_PZ9uVjluuQs5rJpBDBaa0l5obEGAtpQky6UEk7XtC6aulzrhoARJSFSl7UgIOqiEmUyw-bo_TT3N7Rq8Emt3ykHVt0sVmr8w5gJxjB5LBJ7ObHJ18PWhKg6G7RpW-iN2wYluaBpp445evMfuXFb3ycjSuIkVQrOEvT2GJTMCMpKTEaBZKK0dyF40xxUEqzGgNQYkBoDUvuAUs-7_WQIGtrGQ69tODRSxioq5chdTNwmROf_1UWVxnGa6p-muu0b5zt4cr5dqwi71vm_Q9lxGc9rOq3j</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Blum, Michael G. B.</creator><general>Taylor &amp; Francis</general><general>American Statistical Association</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20100901</creationdate><title>Approximate Bayesian Computation: A Nonparametric Perspective</title><author>Blum, Michael G. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643t-8ff7a32bc8245c0ca1ace2e0ca22142d2b5fb6dcf1ae76118c6b71a7b59769443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adjustment</topic><topic>Applications</topic><topic>Asymptotic methods</topic><topic>Bayesian analysis</topic><topic>Bayesian method</topic><topic>Bias</topic><topic>Computation</topic><topic>Computational methods</topic><topic>Conditional density estimation</topic><topic>Data analysis</topic><topic>Density</topic><topic>Density estimation</topic><topic>Descriptive statistics</topic><topic>Distribution theory</topic><topic>Epidemiology</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Genetic mutation</topic><topic>Genetics</topic><topic>Implicit statistical model</topic><topic>Inference</topic><topic>Kernel regression</topic><topic>Linear regression</topic><topic>Local polynomial</topic><topic>Mathematics</topic><topic>Medical sciences</topic><topic>Nonparametric inference</topic><topic>Nonparametric statistics</topic><topic>Parameters</topic><topic>Population genetics</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Rejection</topic><topic>Sampling</topic><topic>Sciences and techniques of general use</topic><topic>Simulation-based inference</topic><topic>Statistical data</topic><topic>Statistical methods</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Statistics Theory</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blum, Michael G. B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blum, Michael G. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate Bayesian Computation: A Nonparametric Perspective</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>105</volume><issue>491</issue><spage>1178</spage><epage>1187</epage><pages>1178-1187</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>Approximate Bayesian Computation is a family of likelihood-free inference techniques that are well suited to models defined in terms of a stochastic generating mechanism. In a nutshell, Approximate Bayesian Computation proceeds by computing summary statistics s obs from the data and simulating summary statistics for different values of the parameter Θ. The posterior distribution is then approximated by an estimator of the conditional density g(Θ|s obs ). In this paper, we derive the asymptotic bias and variance of the standard estimators of the posterior distribution which are based on rejection sampling and linear adjustment. Additionally, we introduce an original estimator of the posterior distribution based on quadratic adjustment and we show that its bias contains a fewer number of terms than the estimator with linear adjustment. Although we find that the estimators with adjustment are not universally superior to the estimator based on rejection sampling, we find that they can achieve better performance when there is a nearly homoscedastic relationship between the summary statistics and the parameter of interest. To make this relationship as homoscedastic as possible, we propose to use transformations of the summary statistics. In different examples borrowed from the population genetics and epidemiological literature, we show the potential of the methods with adjustment and of the transformations of the summary statistics. Supplemental materials containing the details of the proofs are available online.</abstract><cop>Alexandria, VA</cop><pub>Taylor &amp; Francis</pub><doi>10.1198/jasa.2010.tm09448</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2010-09, Vol.105 (491), p.1178-1187
issn 0162-1459
1537-274X
language eng
recordid cdi_pascalfrancis_primary_23392888
source JSTOR Mathematics and Statistics; Jstor Complete Legacy; Taylor & Francis Online
subjects Adjustment
Applications
Asymptotic methods
Bayesian analysis
Bayesian method
Bias
Computation
Computational methods
Conditional density estimation
Data analysis
Density
Density estimation
Descriptive statistics
Distribution theory
Epidemiology
Estimation bias
Estimators
Exact sciences and technology
General topics
Genetic mutation
Genetics
Implicit statistical model
Inference
Kernel regression
Linear regression
Local polynomial
Mathematics
Medical sciences
Nonparametric inference
Nonparametric statistics
Parameters
Population genetics
Probability and statistics
Regression analysis
Rejection
Sampling
Sciences and techniques of general use
Simulation-based inference
Statistical data
Statistical methods
Statistical variance
Statistics
Statistics Theory
Theory and Methods
title Approximate Bayesian Computation: A Nonparametric Perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20Bayesian%20Computation:%20A%20Nonparametric%20Perspective&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Blum,%20Michael%20G.%20B.&rft.date=2010-09-01&rft.volume=105&rft.issue=491&rft.spage=1178&rft.epage=1187&rft.pages=1178-1187&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1198/jasa.2010.tm09448&rft_dat=%3Cjstor_pasca%3E27920142%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457236014&rft_id=info:pmid/&rft_jstor_id=27920142&rfr_iscdi=true