A High-Order Internal Model Based Iterative Learning Control Scheme for Nonlinear Systems With Time-Iteration-Varying Parameters

In this technical note, we propose a new iterative learning control (ILC) scheme for nonlinear systems with parametric uncertainties that are temporally and iteratively varying. The time-varying characteristics of the parameters are described by a set of unknown basis functions that can be any conti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2010-11, Vol.55 (11), p.2665-2670
Hauptverfasser: Yin, Chenkun, Xu, Jian-Xin, Hou, Zhongsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2670
container_issue 11
container_start_page 2665
container_title IEEE transactions on automatic control
container_volume 55
creator Yin, Chenkun
Xu, Jian-Xin
Hou, Zhongsheng
description In this technical note, we propose a new iterative learning control (ILC) scheme for nonlinear systems with parametric uncertainties that are temporally and iteratively varying. The time-varying characteristics of the parameters are described by a set of unknown basis functions that can be any continuous functions. The iteratively varying characteristics of the parameters are described by a high-order internal model (HOIM) that is essentially an auto-regression model in the iteration domain. The new parametric learning law with HOIM is designed to effectively handle the unknown basis functions. The method of composite energy function is used to derive convergence properties of the HOIM-based ILC, namely the pointwise convergence along the time axis and asymptotic convergence along the iteration axis. Comparing with existing ILC schemes, the HOIM-based ILC can deal with nonlinear systems with more generic parametric uncertainties that may not be repeatable along the iteration axis. The validity of the HOIM-based ILC under identical initialization condition (i.i.c.) and the alignment condition is also explored.
doi_str_mv 10.1109/TAC.2010.2069372
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_23387288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5555945</ieee_id><sourcerecordid>2724123681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-a70afa196de606968ab853027d1fc34815f9b6b5c0a16354ee6d4776ea3d13103</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVJoY7be6EXQQjkso4-Vlrt0TFJY3Drgt32uIx3Z2OZXcmR1oHc-qdXxiaHzGWY0e89GD1CvnI24ZyVt-vpbCJYmgTTpSzEBzLiSplMKCEvyIgxbrJSGP2JXMa4S6POcz4i_6b00T5ts2VoMNC5GzA46OgP32BH7yBiQ-dpB4N9QbpACM66Jzrzbgi-o6t6iz3S1gf607vOugTQ1WscsI_0rx22dG17zM4O3mV_ILweDX5BgB7TOn4mH1voIn459zH5_XC_nj1mi-X3-Wy6yGqp8iGDgkELvNQN6nSgNrAxSjJRNLytZW64asuN3qiaAddJgaibvCg0gmy45EyOyc3Jdx_88wHjUPU21th14NAfYsWlVlwZUaiEXr1Dd_5w_JZEMcl4XkpdJIqdqDr4GAO21T7YPt2XoOoYSZUiqY6RVOdIkuT6bAyxhq4N4Gob33RCSlMIYxL37cRZRHx7VqnKXMn_WG2T5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030149367</pqid></control><display><type>article</type><title>A High-Order Internal Model Based Iterative Learning Control Scheme for Nonlinear Systems With Time-Iteration-Varying Parameters</title><source>IEEE Electronic Library (IEL)</source><creator>Yin, Chenkun ; Xu, Jian-Xin ; Hou, Zhongsheng</creator><creatorcontrib>Yin, Chenkun ; Xu, Jian-Xin ; Hou, Zhongsheng</creatorcontrib><description>In this technical note, we propose a new iterative learning control (ILC) scheme for nonlinear systems with parametric uncertainties that are temporally and iteratively varying. The time-varying characteristics of the parameters are described by a set of unknown basis functions that can be any continuous functions. The iteratively varying characteristics of the parameters are described by a high-order internal model (HOIM) that is essentially an auto-regression model in the iteration domain. The new parametric learning law with HOIM is designed to effectively handle the unknown basis functions. The method of composite energy function is used to derive convergence properties of the HOIM-based ILC, namely the pointwise convergence along the time axis and asymptotic convergence along the iteration axis. Comparing with existing ILC schemes, the HOIM-based ILC can deal with nonlinear systems with more generic parametric uncertainties that may not be repeatable along the iteration axis. The validity of the HOIM-based ILC under identical initialization condition (i.i.c.) and the alignment condition is also explored.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2010.2069372</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptative systems ; Applied sciences ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Convergence ; Dynamical systems ; Estimation ; Exact sciences and technology ; High-order internal model ; iteration-varying ; iterative learning control (ILC) ; Iterative methods ; Learning ; Learning systems ; Manipulators ; Mathematical models ; Nonlinear dynamics ; nonlinear system ; Nonlinear systems ; parametric uncertainty ; Studies ; Trajectory ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 2010-11, Vol.55 (11), p.2665-2670</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-a70afa196de606968ab853027d1fc34815f9b6b5c0a16354ee6d4776ea3d13103</citedby><cites>FETCH-LOGICAL-c354t-a70afa196de606968ab853027d1fc34815f9b6b5c0a16354ee6d4776ea3d13103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5555945$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5555945$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23387288$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Chenkun</creatorcontrib><creatorcontrib>Xu, Jian-Xin</creatorcontrib><creatorcontrib>Hou, Zhongsheng</creatorcontrib><title>A High-Order Internal Model Based Iterative Learning Control Scheme for Nonlinear Systems With Time-Iteration-Varying Parameters</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In this technical note, we propose a new iterative learning control (ILC) scheme for nonlinear systems with parametric uncertainties that are temporally and iteratively varying. The time-varying characteristics of the parameters are described by a set of unknown basis functions that can be any continuous functions. The iteratively varying characteristics of the parameters are described by a high-order internal model (HOIM) that is essentially an auto-regression model in the iteration domain. The new parametric learning law with HOIM is designed to effectively handle the unknown basis functions. The method of composite energy function is used to derive convergence properties of the HOIM-based ILC, namely the pointwise convergence along the time axis and asymptotic convergence along the iteration axis. Comparing with existing ILC schemes, the HOIM-based ILC can deal with nonlinear systems with more generic parametric uncertainties that may not be repeatable along the iteration axis. The validity of the HOIM-based ILC under identical initialization condition (i.i.c.) and the alignment condition is also explored.</description><subject>Adaptative systems</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Convergence</subject><subject>Dynamical systems</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>High-order internal model</subject><subject>iteration-varying</subject><subject>iterative learning control (ILC)</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Manipulators</subject><subject>Mathematical models</subject><subject>Nonlinear dynamics</subject><subject>nonlinear system</subject><subject>Nonlinear systems</subject><subject>parametric uncertainty</subject><subject>Studies</subject><subject>Trajectory</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1rGzEQxUVJoY7be6EXQQjkso4-Vlrt0TFJY3Drgt32uIx3Z2OZXcmR1oHc-qdXxiaHzGWY0e89GD1CvnI24ZyVt-vpbCJYmgTTpSzEBzLiSplMKCEvyIgxbrJSGP2JXMa4S6POcz4i_6b00T5ts2VoMNC5GzA46OgP32BH7yBiQ-dpB4N9QbpACM66Jzrzbgi-o6t6iz3S1gf607vOugTQ1WscsI_0rx22dG17zM4O3mV_ILweDX5BgB7TOn4mH1voIn459zH5_XC_nj1mi-X3-Wy6yGqp8iGDgkELvNQN6nSgNrAxSjJRNLytZW64asuN3qiaAddJgaibvCg0gmy45EyOyc3Jdx_88wHjUPU21th14NAfYsWlVlwZUaiEXr1Dd_5w_JZEMcl4XkpdJIqdqDr4GAO21T7YPt2XoOoYSZUiqY6RVOdIkuT6bAyxhq4N4Gob33RCSlMIYxL37cRZRHx7VqnKXMn_WG2T5w</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Yin, Chenkun</creator><creator>Xu, Jian-Xin</creator><creator>Hou, Zhongsheng</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20101101</creationdate><title>A High-Order Internal Model Based Iterative Learning Control Scheme for Nonlinear Systems With Time-Iteration-Varying Parameters</title><author>Yin, Chenkun ; Xu, Jian-Xin ; Hou, Zhongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-a70afa196de606968ab853027d1fc34815f9b6b5c0a16354ee6d4776ea3d13103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptative systems</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Convergence</topic><topic>Dynamical systems</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>High-order internal model</topic><topic>iteration-varying</topic><topic>iterative learning control (ILC)</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Manipulators</topic><topic>Mathematical models</topic><topic>Nonlinear dynamics</topic><topic>nonlinear system</topic><topic>Nonlinear systems</topic><topic>parametric uncertainty</topic><topic>Studies</topic><topic>Trajectory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Chenkun</creatorcontrib><creatorcontrib>Xu, Jian-Xin</creatorcontrib><creatorcontrib>Hou, Zhongsheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yin, Chenkun</au><au>Xu, Jian-Xin</au><au>Hou, Zhongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Order Internal Model Based Iterative Learning Control Scheme for Nonlinear Systems With Time-Iteration-Varying Parameters</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>55</volume><issue>11</issue><spage>2665</spage><epage>2670</epage><pages>2665-2670</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In this technical note, we propose a new iterative learning control (ILC) scheme for nonlinear systems with parametric uncertainties that are temporally and iteratively varying. The time-varying characteristics of the parameters are described by a set of unknown basis functions that can be any continuous functions. The iteratively varying characteristics of the parameters are described by a high-order internal model (HOIM) that is essentially an auto-regression model in the iteration domain. The new parametric learning law with HOIM is designed to effectively handle the unknown basis functions. The method of composite energy function is used to derive convergence properties of the HOIM-based ILC, namely the pointwise convergence along the time axis and asymptotic convergence along the iteration axis. Comparing with existing ILC schemes, the HOIM-based ILC can deal with nonlinear systems with more generic parametric uncertainties that may not be repeatable along the iteration axis. The validity of the HOIM-based ILC under identical initialization condition (i.i.c.) and the alignment condition is also explored.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2010.2069372</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2010-11, Vol.55 (11), p.2665-2670
issn 0018-9286
1558-2523
language eng
recordid cdi_pascalfrancis_primary_23387288
source IEEE Electronic Library (IEL)
subjects Adaptative systems
Applied sciences
Computer science
control theory
systems
Control systems
Control theory. Systems
Convergence
Dynamical systems
Estimation
Exact sciences and technology
High-order internal model
iteration-varying
iterative learning control (ILC)
Iterative methods
Learning
Learning systems
Manipulators
Mathematical models
Nonlinear dynamics
nonlinear system
Nonlinear systems
parametric uncertainty
Studies
Trajectory
Uncertainty
title A High-Order Internal Model Based Iterative Learning Control Scheme for Nonlinear Systems With Time-Iteration-Varying Parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A19%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Order%20Internal%20Model%20Based%20Iterative%20Learning%20Control%20Scheme%20for%20Nonlinear%20Systems%20With%20Time-Iteration-Varying%20Parameters&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Yin,%20Chenkun&rft.date=2010-11-01&rft.volume=55&rft.issue=11&rft.spage=2665&rft.epage=2670&rft.pages=2665-2670&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2010.2069372&rft_dat=%3Cproquest_RIE%3E2724123681%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030149367&rft_id=info:pmid/&rft_ieee_id=5555945&rfr_iscdi=true