Salt-assisted organic-acid-catalyzed depolymerization of cellulose
Dicarboxylic acids ( e.g. oxalic and maleic acid) are able to depolymerize cellulose, producing oligomers and glucose. However, to reach efficient organic-acid-catalyzed performances with crystalline celluloses, high temperatures (>160 °C) are needed. These energetically-demanding conditions lead...
Gespeichert in:
Veröffentlicht in: | Green chemistry : an international journal and green chemistry resource : GC 2010-01, Vol.12 (1), p.1844-1849 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1849 |
---|---|
container_issue | 1 |
container_start_page | 1844 |
container_title | Green chemistry : an international journal and green chemistry resource : GC |
container_volume | 12 |
creator | vom Stein, Thorsten Grande, Philipp Sibilla, Fabrizio Commandeur, Ulrich Fischer, Rainer Leitner, Walter Domínguez de María, Pablo |
description | Dicarboxylic acids (
e.g.
oxalic and maleic acid) are able to depolymerize cellulose, producing oligomers and glucose. However, to reach efficient organic-acid-catalyzed performances with crystalline celluloses, high temperatures (>160 °C) are needed. These energetically-demanding conditions lead to undesired sugar degradation as well. Herein it is shown that organic acid-catalyzed cellulose depolymerization can proceed efficiently in water under mild reaction conditions (100-125 °C) by the addition of inexpensive NaCl (30 wt%). The application of some pressure in the reactor (10-30 bar) also influences and improves the depolymerization outcome. It is believed that the salt solutions act in a mechanism similar to ionic liquids and disrupt the hydrogen-bond matrix among cellulose fibers. Depolymerization proceeds efficiently with amorphous cellulose, α-cellulose, as well as with microcrystalline cellulose (Avicel
®
). Importantly, catalysis can be easily controlled by temperature, catalyst loading and salt concentrations, as well as by the applied pressure in the reactor, and thus sugar degradation can be diminished. Furthermore, experiments conducted using concentrated seawater as solvent and maleic acid as catalyst showed positive results in the hydrolysis of Avicel
®
.
Joining forces: dicarboxylic acids combined with inorganic salts (NaCl or CaCl
2
) afford the depolymerization of crystalline cellulose under mild conditions in water. |
doi_str_mv | 10.1039/c0gc00262c |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_23377028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907187875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-5190a8b00806dd10a2890a24f9b8b3e9ecd787e653aef5d76e66d434c86a53413</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKsX70I9iCCsTj42yR61-AUFD-p5mSbZEkmbNdke2r_eLS0VL55meO83j-ERck7hlgKv7gzMDACTzByQARWSFxVTcLjfJTsmJzl_AVCqpBiQh3cMXYE5-9w5O4pphgtvCjTeFgY7DKt1L1vXxrCau-TX2Pm4GMVmZFwIyxCzOyVHDYbsznZzSD6fHj_GL8Xk7fl1fD8pjBCiK0paAeopgAZpLQVkuheYaKqpnnJXOWOVVk6WHF1TWiWdlFZwYbTEkgvKh-R6m9um-L10uavnPm--wIWLy1xXoKjuI8qevNmSJsWck2vqNvk5plVNod70VP_21MNXu1jMBkOTcGF83l8wzpUCpnvuYsulbPbun5zL__y6tQ3_ATc3fTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907187875</pqid></control><display><type>article</type><title>Salt-assisted organic-acid-catalyzed depolymerization of cellulose</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>vom Stein, Thorsten ; Grande, Philipp ; Sibilla, Fabrizio ; Commandeur, Ulrich ; Fischer, Rainer ; Leitner, Walter ; Domínguez de María, Pablo</creator><creatorcontrib>vom Stein, Thorsten ; Grande, Philipp ; Sibilla, Fabrizio ; Commandeur, Ulrich ; Fischer, Rainer ; Leitner, Walter ; Domínguez de María, Pablo</creatorcontrib><description>Dicarboxylic acids (
e.g.
oxalic and maleic acid) are able to depolymerize cellulose, producing oligomers and glucose. However, to reach efficient organic-acid-catalyzed performances with crystalline celluloses, high temperatures (>160 °C) are needed. These energetically-demanding conditions lead to undesired sugar degradation as well. Herein it is shown that organic acid-catalyzed cellulose depolymerization can proceed efficiently in water under mild reaction conditions (100-125 °C) by the addition of inexpensive NaCl (30 wt%). The application of some pressure in the reactor (10-30 bar) also influences and improves the depolymerization outcome. It is believed that the salt solutions act in a mechanism similar to ionic liquids and disrupt the hydrogen-bond matrix among cellulose fibers. Depolymerization proceeds efficiently with amorphous cellulose, α-cellulose, as well as with microcrystalline cellulose (Avicel
®
). Importantly, catalysis can be easily controlled by temperature, catalyst loading and salt concentrations, as well as by the applied pressure in the reactor, and thus sugar degradation can be diminished. Furthermore, experiments conducted using concentrated seawater as solvent and maleic acid as catalyst showed positive results in the hydrolysis of Avicel
®
.
Joining forces: dicarboxylic acids combined with inorganic salts (NaCl or CaCl
2
) afford the depolymerization of crystalline cellulose under mild conditions in water.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/c0gc00262c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Applied sciences ; Carbohydrates with 4, 5, 6, ... C atoms, dissacharides and oligosaccharides ; Carbohydrates. Nucleosides and nucleotides ; Catalysis ; Catalysts: preparations and properties ; Cellulose and derivatives ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Kinetics and mechanisms ; Natural polymers ; Organic chemistry ; Physicochemistry of polymers ; Preparations and properties ; Reactivity and mechanisms ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2010-01, Vol.12 (1), p.1844-1849</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-5190a8b00806dd10a2890a24f9b8b3e9ecd787e653aef5d76e66d434c86a53413</citedby><cites>FETCH-LOGICAL-c444t-5190a8b00806dd10a2890a24f9b8b3e9ecd787e653aef5d76e66d434c86a53413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23377028$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>vom Stein, Thorsten</creatorcontrib><creatorcontrib>Grande, Philipp</creatorcontrib><creatorcontrib>Sibilla, Fabrizio</creatorcontrib><creatorcontrib>Commandeur, Ulrich</creatorcontrib><creatorcontrib>Fischer, Rainer</creatorcontrib><creatorcontrib>Leitner, Walter</creatorcontrib><creatorcontrib>Domínguez de María, Pablo</creatorcontrib><title>Salt-assisted organic-acid-catalyzed depolymerization of cellulose</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Dicarboxylic acids (
e.g.
oxalic and maleic acid) are able to depolymerize cellulose, producing oligomers and glucose. However, to reach efficient organic-acid-catalyzed performances with crystalline celluloses, high temperatures (>160 °C) are needed. These energetically-demanding conditions lead to undesired sugar degradation as well. Herein it is shown that organic acid-catalyzed cellulose depolymerization can proceed efficiently in water under mild reaction conditions (100-125 °C) by the addition of inexpensive NaCl (30 wt%). The application of some pressure in the reactor (10-30 bar) also influences and improves the depolymerization outcome. It is believed that the salt solutions act in a mechanism similar to ionic liquids and disrupt the hydrogen-bond matrix among cellulose fibers. Depolymerization proceeds efficiently with amorphous cellulose, α-cellulose, as well as with microcrystalline cellulose (Avicel
®
). Importantly, catalysis can be easily controlled by temperature, catalyst loading and salt concentrations, as well as by the applied pressure in the reactor, and thus sugar degradation can be diminished. Furthermore, experiments conducted using concentrated seawater as solvent and maleic acid as catalyst showed positive results in the hydrolysis of Avicel
®
.
Joining forces: dicarboxylic acids combined with inorganic salts (NaCl or CaCl
2
) afford the depolymerization of crystalline cellulose under mild conditions in water.</description><subject>Applied sciences</subject><subject>Carbohydrates with 4, 5, 6, ... C atoms, dissacharides and oligosaccharides</subject><subject>Carbohydrates. Nucleosides and nucleotides</subject><subject>Catalysis</subject><subject>Catalysts: preparations and properties</subject><subject>Cellulose and derivatives</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Kinetics and mechanisms</subject><subject>Natural polymers</subject><subject>Organic chemistry</subject><subject>Physicochemistry of polymers</subject><subject>Preparations and properties</subject><subject>Reactivity and mechanisms</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKsX70I9iCCsTj42yR61-AUFD-p5mSbZEkmbNdke2r_eLS0VL55meO83j-ERck7hlgKv7gzMDACTzByQARWSFxVTcLjfJTsmJzl_AVCqpBiQh3cMXYE5-9w5O4pphgtvCjTeFgY7DKt1L1vXxrCau-TX2Pm4GMVmZFwIyxCzOyVHDYbsznZzSD6fHj_GL8Xk7fl1fD8pjBCiK0paAeopgAZpLQVkuheYaKqpnnJXOWOVVk6WHF1TWiWdlFZwYbTEkgvKh-R6m9um-L10uavnPm--wIWLy1xXoKjuI8qevNmSJsWck2vqNvk5plVNod70VP_21MNXu1jMBkOTcGF83l8wzpUCpnvuYsulbPbun5zL__y6tQ3_ATc3fTI</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>vom Stein, Thorsten</creator><creator>Grande, Philipp</creator><creator>Sibilla, Fabrizio</creator><creator>Commandeur, Ulrich</creator><creator>Fischer, Rainer</creator><creator>Leitner, Walter</creator><creator>Domínguez de María, Pablo</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20100101</creationdate><title>Salt-assisted organic-acid-catalyzed depolymerization of cellulose</title><author>vom Stein, Thorsten ; Grande, Philipp ; Sibilla, Fabrizio ; Commandeur, Ulrich ; Fischer, Rainer ; Leitner, Walter ; Domínguez de María, Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-5190a8b00806dd10a2890a24f9b8b3e9ecd787e653aef5d76e66d434c86a53413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Carbohydrates with 4, 5, 6, ... C atoms, dissacharides and oligosaccharides</topic><topic>Carbohydrates. Nucleosides and nucleotides</topic><topic>Catalysis</topic><topic>Catalysts: preparations and properties</topic><topic>Cellulose and derivatives</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Kinetics and mechanisms</topic><topic>Natural polymers</topic><topic>Organic chemistry</topic><topic>Physicochemistry of polymers</topic><topic>Preparations and properties</topic><topic>Reactivity and mechanisms</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>vom Stein, Thorsten</creatorcontrib><creatorcontrib>Grande, Philipp</creatorcontrib><creatorcontrib>Sibilla, Fabrizio</creatorcontrib><creatorcontrib>Commandeur, Ulrich</creatorcontrib><creatorcontrib>Fischer, Rainer</creatorcontrib><creatorcontrib>Leitner, Walter</creatorcontrib><creatorcontrib>Domínguez de María, Pablo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>vom Stein, Thorsten</au><au>Grande, Philipp</au><au>Sibilla, Fabrizio</au><au>Commandeur, Ulrich</au><au>Fischer, Rainer</au><au>Leitner, Walter</au><au>Domínguez de María, Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salt-assisted organic-acid-catalyzed depolymerization of cellulose</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>12</volume><issue>1</issue><spage>1844</spage><epage>1849</epage><pages>1844-1849</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Dicarboxylic acids (
e.g.
oxalic and maleic acid) are able to depolymerize cellulose, producing oligomers and glucose. However, to reach efficient organic-acid-catalyzed performances with crystalline celluloses, high temperatures (>160 °C) are needed. These energetically-demanding conditions lead to undesired sugar degradation as well. Herein it is shown that organic acid-catalyzed cellulose depolymerization can proceed efficiently in water under mild reaction conditions (100-125 °C) by the addition of inexpensive NaCl (30 wt%). The application of some pressure in the reactor (10-30 bar) also influences and improves the depolymerization outcome. It is believed that the salt solutions act in a mechanism similar to ionic liquids and disrupt the hydrogen-bond matrix among cellulose fibers. Depolymerization proceeds efficiently with amorphous cellulose, α-cellulose, as well as with microcrystalline cellulose (Avicel
®
). Importantly, catalysis can be easily controlled by temperature, catalyst loading and salt concentrations, as well as by the applied pressure in the reactor, and thus sugar degradation can be diminished. Furthermore, experiments conducted using concentrated seawater as solvent and maleic acid as catalyst showed positive results in the hydrolysis of Avicel
®
.
Joining forces: dicarboxylic acids combined with inorganic salts (NaCl or CaCl
2
) afford the depolymerization of crystalline cellulose under mild conditions in water.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c0gc00262c</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9262 |
ispartof | Green chemistry : an international journal and green chemistry resource : GC, 2010-01, Vol.12 (1), p.1844-1849 |
issn | 1463-9262 1463-9270 |
language | eng |
recordid | cdi_pascalfrancis_primary_23377028 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Applied sciences Carbohydrates with 4, 5, 6, ... C atoms, dissacharides and oligosaccharides Carbohydrates. Nucleosides and nucleotides Catalysis Catalysts: preparations and properties Cellulose and derivatives Chemistry Exact sciences and technology General and physical chemistry Kinetics and mechanisms Natural polymers Organic chemistry Physicochemistry of polymers Preparations and properties Reactivity and mechanisms Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | Salt-assisted organic-acid-catalyzed depolymerization of cellulose |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salt-assisted%20organic-acid-catalyzed%20depolymerization%20of%20cellulose&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=vom%20Stein,%20Thorsten&rft.date=2010-01-01&rft.volume=12&rft.issue=1&rft.spage=1844&rft.epage=1849&rft.pages=1844-1849&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/c0gc00262c&rft_dat=%3Cproquest_pasca%3E907187875%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907187875&rft_id=info:pmid/&rfr_iscdi=true |