Salt-assisted organic-acid-catalyzed depolymerization of cellulose

Dicarboxylic acids ( e.g. oxalic and maleic acid) are able to depolymerize cellulose, producing oligomers and glucose. However, to reach efficient organic-acid-catalyzed performances with crystalline celluloses, high temperatures (>160 °C) are needed. These energetically-demanding conditions lead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2010-01, Vol.12 (1), p.1844-1849
Hauptverfasser: vom Stein, Thorsten, Grande, Philipp, Sibilla, Fabrizio, Commandeur, Ulrich, Fischer, Rainer, Leitner, Walter, Domínguez de María, Pablo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1849
container_issue 1
container_start_page 1844
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 12
creator vom Stein, Thorsten
Grande, Philipp
Sibilla, Fabrizio
Commandeur, Ulrich
Fischer, Rainer
Leitner, Walter
Domínguez de María, Pablo
description Dicarboxylic acids ( e.g. oxalic and maleic acid) are able to depolymerize cellulose, producing oligomers and glucose. However, to reach efficient organic-acid-catalyzed performances with crystalline celluloses, high temperatures (>160 °C) are needed. These energetically-demanding conditions lead to undesired sugar degradation as well. Herein it is shown that organic acid-catalyzed cellulose depolymerization can proceed efficiently in water under mild reaction conditions (100-125 °C) by the addition of inexpensive NaCl (30 wt%). The application of some pressure in the reactor (10-30 bar) also influences and improves the depolymerization outcome. It is believed that the salt solutions act in a mechanism similar to ionic liquids and disrupt the hydrogen-bond matrix among cellulose fibers. Depolymerization proceeds efficiently with amorphous cellulose, α-cellulose, as well as with microcrystalline cellulose (Avicel ® ). Importantly, catalysis can be easily controlled by temperature, catalyst loading and salt concentrations, as well as by the applied pressure in the reactor, and thus sugar degradation can be diminished. Furthermore, experiments conducted using concentrated seawater as solvent and maleic acid as catalyst showed positive results in the hydrolysis of Avicel ® . Joining forces: dicarboxylic acids combined with inorganic salts (NaCl or CaCl 2 ) afford the depolymerization of crystalline cellulose under mild conditions in water.
doi_str_mv 10.1039/c0gc00262c
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_23377028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907187875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-5190a8b00806dd10a2890a24f9b8b3e9ecd787e653aef5d76e66d434c86a53413</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKsX70I9iCCsTj42yR61-AUFD-p5mSbZEkmbNdke2r_eLS0VL55meO83j-ERck7hlgKv7gzMDACTzByQARWSFxVTcLjfJTsmJzl_AVCqpBiQh3cMXYE5-9w5O4pphgtvCjTeFgY7DKt1L1vXxrCau-TX2Pm4GMVmZFwIyxCzOyVHDYbsznZzSD6fHj_GL8Xk7fl1fD8pjBCiK0paAeopgAZpLQVkuheYaKqpnnJXOWOVVk6WHF1TWiWdlFZwYbTEkgvKh-R6m9um-L10uavnPm--wIWLy1xXoKjuI8qevNmSJsWck2vqNvk5plVNod70VP_21MNXu1jMBkOTcGF83l8wzpUCpnvuYsulbPbun5zL__y6tQ3_ATc3fTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907187875</pqid></control><display><type>article</type><title>Salt-assisted organic-acid-catalyzed depolymerization of cellulose</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>vom Stein, Thorsten ; Grande, Philipp ; Sibilla, Fabrizio ; Commandeur, Ulrich ; Fischer, Rainer ; Leitner, Walter ; Domínguez de María, Pablo</creator><creatorcontrib>vom Stein, Thorsten ; Grande, Philipp ; Sibilla, Fabrizio ; Commandeur, Ulrich ; Fischer, Rainer ; Leitner, Walter ; Domínguez de María, Pablo</creatorcontrib><description>Dicarboxylic acids ( e.g. oxalic and maleic acid) are able to depolymerize cellulose, producing oligomers and glucose. However, to reach efficient organic-acid-catalyzed performances with crystalline celluloses, high temperatures (&gt;160 °C) are needed. These energetically-demanding conditions lead to undesired sugar degradation as well. Herein it is shown that organic acid-catalyzed cellulose depolymerization can proceed efficiently in water under mild reaction conditions (100-125 °C) by the addition of inexpensive NaCl (30 wt%). The application of some pressure in the reactor (10-30 bar) also influences and improves the depolymerization outcome. It is believed that the salt solutions act in a mechanism similar to ionic liquids and disrupt the hydrogen-bond matrix among cellulose fibers. Depolymerization proceeds efficiently with amorphous cellulose, α-cellulose, as well as with microcrystalline cellulose (Avicel ® ). Importantly, catalysis can be easily controlled by temperature, catalyst loading and salt concentrations, as well as by the applied pressure in the reactor, and thus sugar degradation can be diminished. Furthermore, experiments conducted using concentrated seawater as solvent and maleic acid as catalyst showed positive results in the hydrolysis of Avicel ® . Joining forces: dicarboxylic acids combined with inorganic salts (NaCl or CaCl 2 ) afford the depolymerization of crystalline cellulose under mild conditions in water.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/c0gc00262c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Applied sciences ; Carbohydrates with 4, 5, 6, ... C atoms, dissacharides and oligosaccharides ; Carbohydrates. Nucleosides and nucleotides ; Catalysis ; Catalysts: preparations and properties ; Cellulose and derivatives ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Kinetics and mechanisms ; Natural polymers ; Organic chemistry ; Physicochemistry of polymers ; Preparations and properties ; Reactivity and mechanisms ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2010-01, Vol.12 (1), p.1844-1849</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-5190a8b00806dd10a2890a24f9b8b3e9ecd787e653aef5d76e66d434c86a53413</citedby><cites>FETCH-LOGICAL-c444t-5190a8b00806dd10a2890a24f9b8b3e9ecd787e653aef5d76e66d434c86a53413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23377028$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>vom Stein, Thorsten</creatorcontrib><creatorcontrib>Grande, Philipp</creatorcontrib><creatorcontrib>Sibilla, Fabrizio</creatorcontrib><creatorcontrib>Commandeur, Ulrich</creatorcontrib><creatorcontrib>Fischer, Rainer</creatorcontrib><creatorcontrib>Leitner, Walter</creatorcontrib><creatorcontrib>Domínguez de María, Pablo</creatorcontrib><title>Salt-assisted organic-acid-catalyzed depolymerization of cellulose</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Dicarboxylic acids ( e.g. oxalic and maleic acid) are able to depolymerize cellulose, producing oligomers and glucose. However, to reach efficient organic-acid-catalyzed performances with crystalline celluloses, high temperatures (&gt;160 °C) are needed. These energetically-demanding conditions lead to undesired sugar degradation as well. Herein it is shown that organic acid-catalyzed cellulose depolymerization can proceed efficiently in water under mild reaction conditions (100-125 °C) by the addition of inexpensive NaCl (30 wt%). The application of some pressure in the reactor (10-30 bar) also influences and improves the depolymerization outcome. It is believed that the salt solutions act in a mechanism similar to ionic liquids and disrupt the hydrogen-bond matrix among cellulose fibers. Depolymerization proceeds efficiently with amorphous cellulose, α-cellulose, as well as with microcrystalline cellulose (Avicel ® ). Importantly, catalysis can be easily controlled by temperature, catalyst loading and salt concentrations, as well as by the applied pressure in the reactor, and thus sugar degradation can be diminished. Furthermore, experiments conducted using concentrated seawater as solvent and maleic acid as catalyst showed positive results in the hydrolysis of Avicel ® . Joining forces: dicarboxylic acids combined with inorganic salts (NaCl or CaCl 2 ) afford the depolymerization of crystalline cellulose under mild conditions in water.</description><subject>Applied sciences</subject><subject>Carbohydrates with 4, 5, 6, ... C atoms, dissacharides and oligosaccharides</subject><subject>Carbohydrates. Nucleosides and nucleotides</subject><subject>Catalysis</subject><subject>Catalysts: preparations and properties</subject><subject>Cellulose and derivatives</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Kinetics and mechanisms</subject><subject>Natural polymers</subject><subject>Organic chemistry</subject><subject>Physicochemistry of polymers</subject><subject>Preparations and properties</subject><subject>Reactivity and mechanisms</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKsX70I9iCCsTj42yR61-AUFD-p5mSbZEkmbNdke2r_eLS0VL55meO83j-ERck7hlgKv7gzMDACTzByQARWSFxVTcLjfJTsmJzl_AVCqpBiQh3cMXYE5-9w5O4pphgtvCjTeFgY7DKt1L1vXxrCau-TX2Pm4GMVmZFwIyxCzOyVHDYbsznZzSD6fHj_GL8Xk7fl1fD8pjBCiK0paAeopgAZpLQVkuheYaKqpnnJXOWOVVk6WHF1TWiWdlFZwYbTEkgvKh-R6m9um-L10uavnPm--wIWLy1xXoKjuI8qevNmSJsWck2vqNvk5plVNod70VP_21MNXu1jMBkOTcGF83l8wzpUCpnvuYsulbPbun5zL__y6tQ3_ATc3fTI</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>vom Stein, Thorsten</creator><creator>Grande, Philipp</creator><creator>Sibilla, Fabrizio</creator><creator>Commandeur, Ulrich</creator><creator>Fischer, Rainer</creator><creator>Leitner, Walter</creator><creator>Domínguez de María, Pablo</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20100101</creationdate><title>Salt-assisted organic-acid-catalyzed depolymerization of cellulose</title><author>vom Stein, Thorsten ; Grande, Philipp ; Sibilla, Fabrizio ; Commandeur, Ulrich ; Fischer, Rainer ; Leitner, Walter ; Domínguez de María, Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-5190a8b00806dd10a2890a24f9b8b3e9ecd787e653aef5d76e66d434c86a53413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Carbohydrates with 4, 5, 6, ... C atoms, dissacharides and oligosaccharides</topic><topic>Carbohydrates. Nucleosides and nucleotides</topic><topic>Catalysis</topic><topic>Catalysts: preparations and properties</topic><topic>Cellulose and derivatives</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Kinetics and mechanisms</topic><topic>Natural polymers</topic><topic>Organic chemistry</topic><topic>Physicochemistry of polymers</topic><topic>Preparations and properties</topic><topic>Reactivity and mechanisms</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>vom Stein, Thorsten</creatorcontrib><creatorcontrib>Grande, Philipp</creatorcontrib><creatorcontrib>Sibilla, Fabrizio</creatorcontrib><creatorcontrib>Commandeur, Ulrich</creatorcontrib><creatorcontrib>Fischer, Rainer</creatorcontrib><creatorcontrib>Leitner, Walter</creatorcontrib><creatorcontrib>Domínguez de María, Pablo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>vom Stein, Thorsten</au><au>Grande, Philipp</au><au>Sibilla, Fabrizio</au><au>Commandeur, Ulrich</au><au>Fischer, Rainer</au><au>Leitner, Walter</au><au>Domínguez de María, Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salt-assisted organic-acid-catalyzed depolymerization of cellulose</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>12</volume><issue>1</issue><spage>1844</spage><epage>1849</epage><pages>1844-1849</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Dicarboxylic acids ( e.g. oxalic and maleic acid) are able to depolymerize cellulose, producing oligomers and glucose. However, to reach efficient organic-acid-catalyzed performances with crystalline celluloses, high temperatures (&gt;160 °C) are needed. These energetically-demanding conditions lead to undesired sugar degradation as well. Herein it is shown that organic acid-catalyzed cellulose depolymerization can proceed efficiently in water under mild reaction conditions (100-125 °C) by the addition of inexpensive NaCl (30 wt%). The application of some pressure in the reactor (10-30 bar) also influences and improves the depolymerization outcome. It is believed that the salt solutions act in a mechanism similar to ionic liquids and disrupt the hydrogen-bond matrix among cellulose fibers. Depolymerization proceeds efficiently with amorphous cellulose, α-cellulose, as well as with microcrystalline cellulose (Avicel ® ). Importantly, catalysis can be easily controlled by temperature, catalyst loading and salt concentrations, as well as by the applied pressure in the reactor, and thus sugar degradation can be diminished. Furthermore, experiments conducted using concentrated seawater as solvent and maleic acid as catalyst showed positive results in the hydrolysis of Avicel ® . Joining forces: dicarboxylic acids combined with inorganic salts (NaCl or CaCl 2 ) afford the depolymerization of crystalline cellulose under mild conditions in water.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c0gc00262c</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2010-01, Vol.12 (1), p.1844-1849
issn 1463-9262
1463-9270
language eng
recordid cdi_pascalfrancis_primary_23377028
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Applied sciences
Carbohydrates with 4, 5, 6, ... C atoms, dissacharides and oligosaccharides
Carbohydrates. Nucleosides and nucleotides
Catalysis
Catalysts: preparations and properties
Cellulose and derivatives
Chemistry
Exact sciences and technology
General and physical chemistry
Kinetics and mechanisms
Natural polymers
Organic chemistry
Physicochemistry of polymers
Preparations and properties
Reactivity and mechanisms
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Salt-assisted organic-acid-catalyzed depolymerization of cellulose
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salt-assisted%20organic-acid-catalyzed%20depolymerization%20of%20cellulose&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=vom%20Stein,%20Thorsten&rft.date=2010-01-01&rft.volume=12&rft.issue=1&rft.spage=1844&rft.epage=1849&rft.pages=1844-1849&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/c0gc00262c&rft_dat=%3Cproquest_pasca%3E907187875%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907187875&rft_id=info:pmid/&rfr_iscdi=true