On scalar and vector ℓ -stable functions
The notion of a scalar function that is ℓ -stable at a point is introduced in [D. Bednařík, K. Pastor, On second-order conditions in unconstrained optimization, Math. Program. Ser. A 113 (2008) 283–298]. In the present paper a characterization of the ℓ -stable functions is obtained. Further, the not...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2011, Vol.74 (1), p.182-194 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194 |
---|---|
container_issue | 1 |
container_start_page | 182 |
container_title | Nonlinear analysis |
container_volume | 74 |
creator | Ginchev, Ivan |
description | The notion of a scalar function that is
ℓ
-stable at a point is introduced in [D. Bednařík, K. Pastor, On second-order conditions in unconstrained optimization, Math. Program. Ser. A 113 (2008) 283–298]. In the present paper a characterization of the
ℓ
-stable functions is obtained. Further, the notion of an
ℓ
-stable function is generalized from scalar to vector functions. In an application, optimality conditions for constrained vector problems with
ℓ
-stable data are established. |
doi_str_mv | 10.1016/j.na.2010.08.032 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_23327647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X10005869</els_id><sourcerecordid>S0362546X10005869</sourcerecordid><originalsourceid>FETCH-LOGICAL-e236t-ce338f535daac2e872531b868cba4a6b64b5390a262c1134b405798758e2b3953</originalsourceid><addsrcrecordid>eNotkE9LAzEUxIMoWKt3j3vxIuz6krf5U29SrAqFXhS8hZdsFlJqWpK14N1v4Df0k7ilnoaBYZj5MXbNoeHA1d26SdQIGC2YBlCcsAk3GmspuDxlE0Alatmq93N2UcoaALhGNWG3q1QVTxvKFaWu2gc_bHP1-_1T1WUgtwlV_5n8ELepXLKznjYlXP3rlL0tHl_nz_Vy9fQyf1jWQaAaah8QTS9RdkReBKOFRO6MMt5RS8qp1kmcAQklPOfYuhaknhktTRAOZxKn7ObYu6PDsj5T8rHYXY4flL-sQBRatXrM3R9zYRyzjyHb4mNIPnQxjzdst42Wgz3QsWubyB7oWDB2pIN_P5tXbA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On scalar and vector ℓ -stable functions</title><source>Elsevier ScienceDirect Journals</source><creator>Ginchev, Ivan</creator><creatorcontrib>Ginchev, Ivan</creatorcontrib><description>The notion of a scalar function that is
ℓ
-stable at a point is introduced in [D. Bednařík, K. Pastor, On second-order conditions in unconstrained optimization, Math. Program. Ser. A 113 (2008) 283–298]. In the present paper a characterization of the
ℓ
-stable functions is obtained. Further, the notion of an
ℓ
-stable function is generalized from scalar to vector functions. In an application, optimality conditions for constrained vector problems with
ℓ
-stable data are established.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2010.08.032</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>[formula omitted] functions ; [formula omitted]-stable functions ; Calculus of variations and optimal control ; Exact sciences and technology ; Lipschitz functions ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in mathematical programming, optimization and calculus of variations ; Numerical methods in optimization and calculus of variations ; Optimality conditions ; Sciences and techniques of general use ; Vector optimization</subject><ispartof>Nonlinear analysis, 2011, Vol.74 (1), p.182-194</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X10005869$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27902,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23327647$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ginchev, Ivan</creatorcontrib><title>On scalar and vector ℓ -stable functions</title><title>Nonlinear analysis</title><description>The notion of a scalar function that is
ℓ
-stable at a point is introduced in [D. Bednařík, K. Pastor, On second-order conditions in unconstrained optimization, Math. Program. Ser. A 113 (2008) 283–298]. In the present paper a characterization of the
ℓ
-stable functions is obtained. Further, the notion of an
ℓ
-stable function is generalized from scalar to vector functions. In an application, optimality conditions for constrained vector problems with
ℓ
-stable data are established.</description><subject>[formula omitted] functions</subject><subject>[formula omitted]-stable functions</subject><subject>Calculus of variations and optimal control</subject><subject>Exact sciences and technology</subject><subject>Lipschitz functions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in mathematical programming, optimization and calculus of variations</subject><subject>Numerical methods in optimization and calculus of variations</subject><subject>Optimality conditions</subject><subject>Sciences and techniques of general use</subject><subject>Vector optimization</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNotkE9LAzEUxIMoWKt3j3vxIuz6krf5U29SrAqFXhS8hZdsFlJqWpK14N1v4Df0k7ilnoaBYZj5MXbNoeHA1d26SdQIGC2YBlCcsAk3GmspuDxlE0Alatmq93N2UcoaALhGNWG3q1QVTxvKFaWu2gc_bHP1-_1T1WUgtwlV_5n8ELepXLKznjYlXP3rlL0tHl_nz_Vy9fQyf1jWQaAaah8QTS9RdkReBKOFRO6MMt5RS8qp1kmcAQklPOfYuhaknhktTRAOZxKn7ObYu6PDsj5T8rHYXY4flL-sQBRatXrM3R9zYRyzjyHb4mNIPnQxjzdst42Wgz3QsWubyB7oWDB2pIN_P5tXbA</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Ginchev, Ivan</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>2011</creationdate><title>On scalar and vector ℓ -stable functions</title><author>Ginchev, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e236t-ce338f535daac2e872531b868cba4a6b64b5390a262c1134b405798758e2b3953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>[formula omitted] functions</topic><topic>[formula omitted]-stable functions</topic><topic>Calculus of variations and optimal control</topic><topic>Exact sciences and technology</topic><topic>Lipschitz functions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in mathematical programming, optimization and calculus of variations</topic><topic>Numerical methods in optimization and calculus of variations</topic><topic>Optimality conditions</topic><topic>Sciences and techniques of general use</topic><topic>Vector optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ginchev, Ivan</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ginchev, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On scalar and vector ℓ -stable functions</atitle><jtitle>Nonlinear analysis</jtitle><date>2011</date><risdate>2011</risdate><volume>74</volume><issue>1</issue><spage>182</spage><epage>194</epage><pages>182-194</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>The notion of a scalar function that is
ℓ
-stable at a point is introduced in [D. Bednařík, K. Pastor, On second-order conditions in unconstrained optimization, Math. Program. Ser. A 113 (2008) 283–298]. In the present paper a characterization of the
ℓ
-stable functions is obtained. Further, the notion of an
ℓ
-stable function is generalized from scalar to vector functions. In an application, optimality conditions for constrained vector problems with
ℓ
-stable data are established.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2010.08.032</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2011, Vol.74 (1), p.182-194 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_pascalfrancis_primary_23327647 |
source | Elsevier ScienceDirect Journals |
subjects | [formula omitted] functions [formula omitted]-stable functions Calculus of variations and optimal control Exact sciences and technology Lipschitz functions Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical methods in mathematical programming, optimization and calculus of variations Numerical methods in optimization and calculus of variations Optimality conditions Sciences and techniques of general use Vector optimization |
title | On scalar and vector ℓ -stable functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20scalar%20and%20vector%20%E2%84%93%20-stable%20functions&rft.jtitle=Nonlinear%20analysis&rft.au=Ginchev,%20Ivan&rft.date=2011&rft.volume=74&rft.issue=1&rft.spage=182&rft.epage=194&rft.pages=182-194&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2010.08.032&rft_dat=%3Celsevier_pasca%3ES0362546X10005869%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0362546X10005869&rfr_iscdi=true |