On scalar and vector ℓ -stable functions

The notion of a scalar function that is ℓ -stable at a point is introduced in [D. Bednařík, K. Pastor, On second-order conditions in unconstrained optimization, Math. Program. Ser. A 113 (2008) 283–298]. In the present paper a characterization of the ℓ -stable functions is obtained. Further, the not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2011, Vol.74 (1), p.182-194
1. Verfasser: Ginchev, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194
container_issue 1
container_start_page 182
container_title Nonlinear analysis
container_volume 74
creator Ginchev, Ivan
description The notion of a scalar function that is ℓ -stable at a point is introduced in [D. Bednařík, K. Pastor, On second-order conditions in unconstrained optimization, Math. Program. Ser. A 113 (2008) 283–298]. In the present paper a characterization of the ℓ -stable functions is obtained. Further, the notion of an ℓ -stable function is generalized from scalar to vector functions. In an application, optimality conditions for constrained vector problems with ℓ -stable data are established.
doi_str_mv 10.1016/j.na.2010.08.032
format Article
fullrecord <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_23327647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X10005869</els_id><sourcerecordid>S0362546X10005869</sourcerecordid><originalsourceid>FETCH-LOGICAL-e236t-ce338f535daac2e872531b868cba4a6b64b5390a262c1134b405798758e2b3953</originalsourceid><addsrcrecordid>eNotkE9LAzEUxIMoWKt3j3vxIuz6krf5U29SrAqFXhS8hZdsFlJqWpK14N1v4Df0k7ilnoaBYZj5MXbNoeHA1d26SdQIGC2YBlCcsAk3GmspuDxlE0Alatmq93N2UcoaALhGNWG3q1QVTxvKFaWu2gc_bHP1-_1T1WUgtwlV_5n8ELepXLKznjYlXP3rlL0tHl_nz_Vy9fQyf1jWQaAaah8QTS9RdkReBKOFRO6MMt5RS8qp1kmcAQklPOfYuhaknhktTRAOZxKn7ObYu6PDsj5T8rHYXY4flL-sQBRatXrM3R9zYRyzjyHb4mNIPnQxjzdst42Wgz3QsWubyB7oWDB2pIN_P5tXbA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On scalar and vector ℓ -stable functions</title><source>Elsevier ScienceDirect Journals</source><creator>Ginchev, Ivan</creator><creatorcontrib>Ginchev, Ivan</creatorcontrib><description>The notion of a scalar function that is ℓ -stable at a point is introduced in [D. Bednařík, K. Pastor, On second-order conditions in unconstrained optimization, Math. Program. Ser. A 113 (2008) 283–298]. In the present paper a characterization of the ℓ -stable functions is obtained. Further, the notion of an ℓ -stable function is generalized from scalar to vector functions. In an application, optimality conditions for constrained vector problems with ℓ -stable data are established.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2010.08.032</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>[formula omitted] functions ; [formula omitted]-stable functions ; Calculus of variations and optimal control ; Exact sciences and technology ; Lipschitz functions ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in mathematical programming, optimization and calculus of variations ; Numerical methods in optimization and calculus of variations ; Optimality conditions ; Sciences and techniques of general use ; Vector optimization</subject><ispartof>Nonlinear analysis, 2011, Vol.74 (1), p.182-194</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X10005869$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27902,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23327647$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ginchev, Ivan</creatorcontrib><title>On scalar and vector ℓ -stable functions</title><title>Nonlinear analysis</title><description>The notion of a scalar function that is ℓ -stable at a point is introduced in [D. Bednařík, K. Pastor, On second-order conditions in unconstrained optimization, Math. Program. Ser. A 113 (2008) 283–298]. In the present paper a characterization of the ℓ -stable functions is obtained. Further, the notion of an ℓ -stable function is generalized from scalar to vector functions. In an application, optimality conditions for constrained vector problems with ℓ -stable data are established.</description><subject>[formula omitted] functions</subject><subject>[formula omitted]-stable functions</subject><subject>Calculus of variations and optimal control</subject><subject>Exact sciences and technology</subject><subject>Lipschitz functions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in mathematical programming, optimization and calculus of variations</subject><subject>Numerical methods in optimization and calculus of variations</subject><subject>Optimality conditions</subject><subject>Sciences and techniques of general use</subject><subject>Vector optimization</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNotkE9LAzEUxIMoWKt3j3vxIuz6krf5U29SrAqFXhS8hZdsFlJqWpK14N1v4Df0k7ilnoaBYZj5MXbNoeHA1d26SdQIGC2YBlCcsAk3GmspuDxlE0Alatmq93N2UcoaALhGNWG3q1QVTxvKFaWu2gc_bHP1-_1T1WUgtwlV_5n8ELepXLKznjYlXP3rlL0tHl_nz_Vy9fQyf1jWQaAaah8QTS9RdkReBKOFRO6MMt5RS8qp1kmcAQklPOfYuhaknhktTRAOZxKn7ObYu6PDsj5T8rHYXY4flL-sQBRatXrM3R9zYRyzjyHb4mNIPnQxjzdst42Wgz3QsWubyB7oWDB2pIN_P5tXbA</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Ginchev, Ivan</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>2011</creationdate><title>On scalar and vector ℓ -stable functions</title><author>Ginchev, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e236t-ce338f535daac2e872531b868cba4a6b64b5390a262c1134b405798758e2b3953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>[formula omitted] functions</topic><topic>[formula omitted]-stable functions</topic><topic>Calculus of variations and optimal control</topic><topic>Exact sciences and technology</topic><topic>Lipschitz functions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in mathematical programming, optimization and calculus of variations</topic><topic>Numerical methods in optimization and calculus of variations</topic><topic>Optimality conditions</topic><topic>Sciences and techniques of general use</topic><topic>Vector optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ginchev, Ivan</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ginchev, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On scalar and vector ℓ -stable functions</atitle><jtitle>Nonlinear analysis</jtitle><date>2011</date><risdate>2011</risdate><volume>74</volume><issue>1</issue><spage>182</spage><epage>194</epage><pages>182-194</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>The notion of a scalar function that is ℓ -stable at a point is introduced in [D. Bednařík, K. Pastor, On second-order conditions in unconstrained optimization, Math. Program. Ser. A 113 (2008) 283–298]. In the present paper a characterization of the ℓ -stable functions is obtained. Further, the notion of an ℓ -stable function is generalized from scalar to vector functions. In an application, optimality conditions for constrained vector problems with ℓ -stable data are established.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2010.08.032</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2011, Vol.74 (1), p.182-194
issn 0362-546X
1873-5215
language eng
recordid cdi_pascalfrancis_primary_23327647
source Elsevier ScienceDirect Journals
subjects [formula omitted] functions
[formula omitted]-stable functions
Calculus of variations and optimal control
Exact sciences and technology
Lipschitz functions
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming, optimization and calculus of variations
Numerical methods in optimization and calculus of variations
Optimality conditions
Sciences and techniques of general use
Vector optimization
title On scalar and vector ℓ -stable functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20scalar%20and%20vector%20%E2%84%93%20-stable%20functions&rft.jtitle=Nonlinear%20analysis&rft.au=Ginchev,%20Ivan&rft.date=2011&rft.volume=74&rft.issue=1&rft.spage=182&rft.epage=194&rft.pages=182-194&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2010.08.032&rft_dat=%3Celsevier_pasca%3ES0362546X10005869%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0362546X10005869&rfr_iscdi=true