Behavioral Modeling of Power Amplifiers With Dynamic Fuzzy Neural Networks

In this letter, dynamic fuzzy neural networks (D-FNN) are applied to model power amplifiers (PAs) with memory effects. The D-FNN model implements Takagi-Sugeno-Kang (TSK) fuzzy systems based on extended radial bias function (RBF) neural networks. The parameters of the model are trained by the online...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE microwave and wireless components letters 2010-09, Vol.20 (9), p.528-530
Hauptverfasser: Zhai, Jianfeng, Zhou, Jianyi, Zhang, Lei, Hong, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 530
container_issue 9
container_start_page 528
container_title IEEE microwave and wireless components letters
container_volume 20
creator Zhai, Jianfeng
Zhou, Jianyi
Zhang, Lei
Hong, Wei
description In this letter, dynamic fuzzy neural networks (D-FNN) are applied to model power amplifiers (PAs) with memory effects. The D-FNN model implements Takagi-Sugeno-Kang (TSK) fuzzy systems based on extended radial bias function (RBF) neural networks. The parameters of the model are trained by the online self-organized learning algorithm, in which the neurons can be recruited or deleted dynamically according to their significance to system performance, and the over fitting or over training problems can be avoided. The D-FNN model is validated in our test bench in which a Doherty PA is excited with 10 MHz and 20 MHz worldwide interoperability for microwave access (WiMAX) signals. Experimental results show that the D-FNN model can give an accurate approximation to characterize the wideband PAs with memory effects.
doi_str_mv 10.1109/LMWC.2010.2052594
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_23204631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5504068</ieee_id><sourcerecordid>787271732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-4dd9ee60f0ffd04edda06b3fe3c71c5509b56312b2165927486dad827b9cc3983</originalsourceid><addsrcrecordid>eNpdkMtu2zAQRYUiAZrXBxTZCAiKruRw-JK4TJ26TWAnXbTIUqCpYUxHFh3SquF8fSnYyCKrmcGcO5h7s-wLkBEAUdfT2dN4REkaKRFUKP4pOwEhqgJKyY-GnkEBjKjP2WmMS0KAVxxOsvvvuND_nA-6zWe-wdZ1z7m3-W-_xZDfrNatsw5DzJ_cZpHf7jq9ciaf9G9vu_wB-0H2gJutDy_xPDu2uo14cahn2d_Jjz_jX8X08efd-GZaGCbEpuBNoxAlscTahnBsGk3knFlkpgQjBFFzIRnQOQUpFC15JRvdVLScK2OYqthZ9m1_dx38a49xU69cNNi2ukPfx7qsSlpCyWgirz6QS9-HLj1XA6GqkiCBJwr2lAk-xoC2Xge30mGXoHoItx7CrYdw60O4SfP1cFlHo1sbdGdcfBdSRglPJhJ3ueccIr6vk0lOZMX-Ay7tgWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1029861614</pqid></control><display><type>article</type><title>Behavioral Modeling of Power Amplifiers With Dynamic Fuzzy Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Zhai, Jianfeng ; Zhou, Jianyi ; Zhang, Lei ; Hong, Wei</creator><creatorcontrib>Zhai, Jianfeng ; Zhou, Jianyi ; Zhang, Lei ; Hong, Wei</creatorcontrib><description>In this letter, dynamic fuzzy neural networks (D-FNN) are applied to model power amplifiers (PAs) with memory effects. The D-FNN model implements Takagi-Sugeno-Kang (TSK) fuzzy systems based on extended radial bias function (RBF) neural networks. The parameters of the model are trained by the online self-organized learning algorithm, in which the neurons can be recruited or deleted dynamically according to their significance to system performance, and the over fitting or over training problems can be avoided. The D-FNN model is validated in our test bench in which a Doherty PA is excited with 10 MHz and 20 MHz worldwide interoperability for microwave access (WiMAX) signals. Experimental results show that the D-FNN model can give an accurate approximation to characterize the wideband PAs with memory effects.</description><identifier>ISSN: 1531-1309</identifier><identifier>ISSN: 2771-957X</identifier><identifier>EISSN: 1558-1764</identifier><identifier>EISSN: 2771-9588</identifier><identifier>DOI: 10.1109/LMWC.2010.2052594</identifier><identifier>CODEN: IMWCBJ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Amplifiers ; Applied sciences ; Circuit properties ; Dynamic fuzzy neural networks (D-FNN) ; Dynamics ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; Fuzzy ; Fuzzy logic ; Fuzzy neural networks ; Fuzzy set theory ; Fuzzy systems ; Mathematical models ; memory effects ; Microwaves ; Neural networks ; Neurons ; power amplifer (PA) ; Power amplifiers ; Power system modeling ; Recruitment ; System performance ; Takagi-Sugeno-Kang model ; Testing</subject><ispartof>IEEE microwave and wireless components letters, 2010-09, Vol.20 (9), p.528-530</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-4dd9ee60f0ffd04edda06b3fe3c71c5509b56312b2165927486dad827b9cc3983</citedby><cites>FETCH-LOGICAL-c355t-4dd9ee60f0ffd04edda06b3fe3c71c5509b56312b2165927486dad827b9cc3983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5504068$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5504068$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23204631$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhai, Jianfeng</creatorcontrib><creatorcontrib>Zhou, Jianyi</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Hong, Wei</creatorcontrib><title>Behavioral Modeling of Power Amplifiers With Dynamic Fuzzy Neural Networks</title><title>IEEE microwave and wireless components letters</title><addtitle>LMWC</addtitle><description>In this letter, dynamic fuzzy neural networks (D-FNN) are applied to model power amplifiers (PAs) with memory effects. The D-FNN model implements Takagi-Sugeno-Kang (TSK) fuzzy systems based on extended radial bias function (RBF) neural networks. The parameters of the model are trained by the online self-organized learning algorithm, in which the neurons can be recruited or deleted dynamically according to their significance to system performance, and the over fitting or over training problems can be avoided. The D-FNN model is validated in our test bench in which a Doherty PA is excited with 10 MHz and 20 MHz worldwide interoperability for microwave access (WiMAX) signals. Experimental results show that the D-FNN model can give an accurate approximation to characterize the wideband PAs with memory effects.</description><subject>Algorithms</subject><subject>Amplifiers</subject><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Dynamic fuzzy neural networks (D-FNN)</subject><subject>Dynamics</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy set theory</subject><subject>Fuzzy systems</subject><subject>Mathematical models</subject><subject>memory effects</subject><subject>Microwaves</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>power amplifer (PA)</subject><subject>Power amplifiers</subject><subject>Power system modeling</subject><subject>Recruitment</subject><subject>System performance</subject><subject>Takagi-Sugeno-Kang model</subject><subject>Testing</subject><issn>1531-1309</issn><issn>2771-957X</issn><issn>1558-1764</issn><issn>2771-9588</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtu2zAQRYUiAZrXBxTZCAiKruRw-JK4TJ26TWAnXbTIUqCpYUxHFh3SquF8fSnYyCKrmcGcO5h7s-wLkBEAUdfT2dN4REkaKRFUKP4pOwEhqgJKyY-GnkEBjKjP2WmMS0KAVxxOsvvvuND_nA-6zWe-wdZ1z7m3-W-_xZDfrNatsw5DzJ_cZpHf7jq9ciaf9G9vu_wB-0H2gJutDy_xPDu2uo14cahn2d_Jjz_jX8X08efd-GZaGCbEpuBNoxAlscTahnBsGk3knFlkpgQjBFFzIRnQOQUpFC15JRvdVLScK2OYqthZ9m1_dx38a49xU69cNNi2ukPfx7qsSlpCyWgirz6QS9-HLj1XA6GqkiCBJwr2lAk-xoC2Xge30mGXoHoItx7CrYdw60O4SfP1cFlHo1sbdGdcfBdSRglPJhJ3ueccIr6vk0lOZMX-Ay7tgWg</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Zhai, Jianfeng</creator><creator>Zhou, Jianyi</creator><creator>Zhang, Lei</creator><creator>Hong, Wei</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100901</creationdate><title>Behavioral Modeling of Power Amplifiers With Dynamic Fuzzy Neural Networks</title><author>Zhai, Jianfeng ; Zhou, Jianyi ; Zhang, Lei ; Hong, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-4dd9ee60f0ffd04edda06b3fe3c71c5509b56312b2165927486dad827b9cc3983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Amplifiers</topic><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Dynamic fuzzy neural networks (D-FNN)</topic><topic>Dynamics</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy set theory</topic><topic>Fuzzy systems</topic><topic>Mathematical models</topic><topic>memory effects</topic><topic>Microwaves</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>power amplifer (PA)</topic><topic>Power amplifiers</topic><topic>Power system modeling</topic><topic>Recruitment</topic><topic>System performance</topic><topic>Takagi-Sugeno-Kang model</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Jianfeng</creatorcontrib><creatorcontrib>Zhou, Jianyi</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Hong, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE microwave and wireless components letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhai, Jianfeng</au><au>Zhou, Jianyi</au><au>Zhang, Lei</au><au>Hong, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavioral Modeling of Power Amplifiers With Dynamic Fuzzy Neural Networks</atitle><jtitle>IEEE microwave and wireless components letters</jtitle><stitle>LMWC</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>20</volume><issue>9</issue><spage>528</spage><epage>530</epage><pages>528-530</pages><issn>1531-1309</issn><issn>2771-957X</issn><eissn>1558-1764</eissn><eissn>2771-9588</eissn><coden>IMWCBJ</coden><abstract>In this letter, dynamic fuzzy neural networks (D-FNN) are applied to model power amplifiers (PAs) with memory effects. The D-FNN model implements Takagi-Sugeno-Kang (TSK) fuzzy systems based on extended radial bias function (RBF) neural networks. The parameters of the model are trained by the online self-organized learning algorithm, in which the neurons can be recruited or deleted dynamically according to their significance to system performance, and the over fitting or over training problems can be avoided. The D-FNN model is validated in our test bench in which a Doherty PA is excited with 10 MHz and 20 MHz worldwide interoperability for microwave access (WiMAX) signals. Experimental results show that the D-FNN model can give an accurate approximation to characterize the wideband PAs with memory effects.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LMWC.2010.2052594</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1531-1309
ispartof IEEE microwave and wireless components letters, 2010-09, Vol.20 (9), p.528-530
issn 1531-1309
2771-957X
1558-1764
2771-9588
language eng
recordid cdi_pascalfrancis_primary_23204631
source IEEE Electronic Library (IEL)
subjects Algorithms
Amplifiers
Applied sciences
Circuit properties
Dynamic fuzzy neural networks (D-FNN)
Dynamics
Electric, optical and optoelectronic circuits
Electronic circuits
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Exact sciences and technology
Fuzzy
Fuzzy logic
Fuzzy neural networks
Fuzzy set theory
Fuzzy systems
Mathematical models
memory effects
Microwaves
Neural networks
Neurons
power amplifer (PA)
Power amplifiers
Power system modeling
Recruitment
System performance
Takagi-Sugeno-Kang model
Testing
title Behavioral Modeling of Power Amplifiers With Dynamic Fuzzy Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavioral%20Modeling%20of%20Power%20Amplifiers%20With%20Dynamic%20Fuzzy%20Neural%20Networks&rft.jtitle=IEEE%20microwave%20and%20wireless%20components%20letters&rft.au=Zhai,%20Jianfeng&rft.date=2010-09-01&rft.volume=20&rft.issue=9&rft.spage=528&rft.epage=530&rft.pages=528-530&rft.issn=1531-1309&rft.eissn=1558-1764&rft.coden=IMWCBJ&rft_id=info:doi/10.1109/LMWC.2010.2052594&rft_dat=%3Cproquest_RIE%3E787271732%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1029861614&rft_id=info:pmid/&rft_ieee_id=5504068&rfr_iscdi=true