Behavioral Modeling of Power Amplifiers With Dynamic Fuzzy Neural Networks

In this letter, dynamic fuzzy neural networks (D-FNN) are applied to model power amplifiers (PAs) with memory effects. The D-FNN model implements Takagi-Sugeno-Kang (TSK) fuzzy systems based on extended radial bias function (RBF) neural networks. The parameters of the model are trained by the online...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE microwave and wireless components letters 2010-09, Vol.20 (9), p.528-530
Hauptverfasser: Zhai, Jianfeng, Zhou, Jianyi, Zhang, Lei, Hong, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, dynamic fuzzy neural networks (D-FNN) are applied to model power amplifiers (PAs) with memory effects. The D-FNN model implements Takagi-Sugeno-Kang (TSK) fuzzy systems based on extended radial bias function (RBF) neural networks. The parameters of the model are trained by the online self-organized learning algorithm, in which the neurons can be recruited or deleted dynamically according to their significance to system performance, and the over fitting or over training problems can be avoided. The D-FNN model is validated in our test bench in which a Doherty PA is excited with 10 MHz and 20 MHz worldwide interoperability for microwave access (WiMAX) signals. Experimental results show that the D-FNN model can give an accurate approximation to characterize the wideband PAs with memory effects.
ISSN:1531-1309
2771-957X
1558-1764
2771-9588
DOI:10.1109/LMWC.2010.2052594