Co-inductive axiomatization of a synchronous language

Over the last decade, the increasing demand for the validation of safety critical systems lead to the development of domain-specific programming languages (e.g. synchronous languages) and automatic verification tools (e.g. model checkers). Conventionally, the verification of a reactive system is imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nowak, David, Beauvais, Jean -René, Talpin, Jean -Pierre
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 399
container_issue
container_start_page 387
container_title
container_volume
creator Nowak, David
Beauvais, Jean -René
Talpin, Jean -Pierre
description Over the last decade, the increasing demand for the validation of safety critical systems lead to the development of domain-specific programming languages (e.g. synchronous languages) and automatic verification tools (e.g. model checkers). Conventionally, the verification of a reactive system is implemented by specifying a discrete model of the system (i.e. a finite-state machine) and then checking this model against temporal properties (e.g. using an automata-based tool). We investigate the use of a theorem prover, Coq, for the specification of infinite state systems and for the verification of co-inductive properties.
doi_str_mv 10.1007/BFb0055148
format Conference Proceeding
fullrecord <record><control><sourceid>hal_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_2293600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00544505v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h287t-aa6999fef675bab61af144288fc188fb1d469f3b733e883e80d6f70d4b20b7103</originalsourceid><addsrcrecordid>eNpFUMlOwzAQNZtEKb3wBTlwgENgHO9HqChFqsQFztY4idtAG1dxW1G-HkdFMNKbkeYth0fIFYU7CqDuHycOQAjK9REZGaWZ4MCNBqqPyYBKSnPGuDkhFz0hE6PEKRkAgyI3irNzMorxA9KwQlFpBkSMQ9601bbcNLs6w68mrHDTfCeENgs-wyzu23LRhTZsY7bEdr7FeX1JzjwuYz36vUPyPnl6G0_z2evzy_hhli8KrTY5ojTG-NpLJRw6SdFTzgutfUnTcrTi0njmFGO11glQSa-g4q4ApyiwIbk95C5waddds8JubwM2dvows_0vlcG5ALGjSXt90K4xlrj0HbZlE_9cRWGYhD7y5iCLiWnndWddCJ_RUrB9w_a_YfYDS6Rm6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Co-inductive axiomatization of a synchronous language</title><source>Springer Books</source><creator>Nowak, David ; Beauvais, Jean -René ; Talpin, Jean -Pierre</creator><contributor>Newey, Malcolm ; Grundy, Jim</contributor><creatorcontrib>Nowak, David ; Beauvais, Jean -René ; Talpin, Jean -Pierre ; Newey, Malcolm ; Grundy, Jim</creatorcontrib><description>Over the last decade, the increasing demand for the validation of safety critical systems lead to the development of domain-specific programming languages (e.g. synchronous languages) and automatic verification tools (e.g. model checkers). Conventionally, the verification of a reactive system is implemented by specifying a discrete model of the system (i.e. a finite-state machine) and then checking this model against temporal properties (e.g. using an automata-based tool). We investigate the use of a theorem prover, Coq, for the specification of infinite state systems and for the verification of co-inductive properties.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540649875</identifier><identifier>ISBN: 9783540649878</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540498018</identifier><identifier>EISBN: 354049801X</identifier><identifier>DOI: 10.1007/BFb0055148</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer Science ; Computer science; control theory; systems ; Embedded Systems ; Exact sciences and technology ; Large Relation ; Model Check ; Proof Assistant ; Safety Critical System ; Signal Program ; Software ; Software engineering</subject><ispartof>Lecture notes in computer science, 1998, p.387-399</ispartof><rights>Springer-Verlag Berlin Heidelberg 1998</rights><rights>1998 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0556-4265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0055148$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0055148$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,309,310,775,776,780,785,786,789,881,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2293600$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00544505$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Newey, Malcolm</contributor><contributor>Grundy, Jim</contributor><creatorcontrib>Nowak, David</creatorcontrib><creatorcontrib>Beauvais, Jean -René</creatorcontrib><creatorcontrib>Talpin, Jean -Pierre</creatorcontrib><title>Co-inductive axiomatization of a synchronous language</title><title>Lecture notes in computer science</title><description>Over the last decade, the increasing demand for the validation of safety critical systems lead to the development of domain-specific programming languages (e.g. synchronous languages) and automatic verification tools (e.g. model checkers). Conventionally, the verification of a reactive system is implemented by specifying a discrete model of the system (i.e. a finite-state machine) and then checking this model against temporal properties (e.g. using an automata-based tool). We investigate the use of a theorem prover, Coq, for the specification of infinite state systems and for the verification of co-inductive properties.</description><subject>Applied sciences</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Embedded Systems</subject><subject>Exact sciences and technology</subject><subject>Large Relation</subject><subject>Model Check</subject><subject>Proof Assistant</subject><subject>Safety Critical System</subject><subject>Signal Program</subject><subject>Software</subject><subject>Software engineering</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540649875</isbn><isbn>9783540649878</isbn><isbn>9783540498018</isbn><isbn>354049801X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFUMlOwzAQNZtEKb3wBTlwgENgHO9HqChFqsQFztY4idtAG1dxW1G-HkdFMNKbkeYth0fIFYU7CqDuHycOQAjK9REZGaWZ4MCNBqqPyYBKSnPGuDkhFz0hE6PEKRkAgyI3irNzMorxA9KwQlFpBkSMQ9601bbcNLs6w68mrHDTfCeENgs-wyzu23LRhTZsY7bEdr7FeX1JzjwuYz36vUPyPnl6G0_z2evzy_hhli8KrTY5ojTG-NpLJRw6SdFTzgutfUnTcrTi0njmFGO11glQSa-g4q4ApyiwIbk95C5waddds8JubwM2dvows_0vlcG5ALGjSXt90K4xlrj0HbZlE_9cRWGYhD7y5iCLiWnndWddCJ_RUrB9w_a_YfYDS6Rm6Q</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Nowak, David</creator><creator>Beauvais, Jean -René</creator><creator>Talpin, Jean -Pierre</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer-Verlag</general><scope>IQODW</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0556-4265</orcidid></search><sort><creationdate>19980101</creationdate><title>Co-inductive axiomatization of a synchronous language</title><author>Nowak, David ; Beauvais, Jean -René ; Talpin, Jean -Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h287t-aa6999fef675bab61af144288fc188fb1d469f3b733e883e80d6f70d4b20b7103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Embedded Systems</topic><topic>Exact sciences and technology</topic><topic>Large Relation</topic><topic>Model Check</topic><topic>Proof Assistant</topic><topic>Safety Critical System</topic><topic>Signal Program</topic><topic>Software</topic><topic>Software engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nowak, David</creatorcontrib><creatorcontrib>Beauvais, Jean -René</creatorcontrib><creatorcontrib>Talpin, Jean -Pierre</creatorcontrib><collection>Pascal-Francis</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nowak, David</au><au>Beauvais, Jean -René</au><au>Talpin, Jean -Pierre</au><au>Newey, Malcolm</au><au>Grundy, Jim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Co-inductive axiomatization of a synchronous language</atitle><btitle>Lecture notes in computer science</btitle><date>1998-01-01</date><risdate>1998</risdate><spage>387</spage><epage>399</epage><pages>387-399</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540649875</isbn><isbn>9783540649878</isbn><eisbn>9783540498018</eisbn><eisbn>354049801X</eisbn><abstract>Over the last decade, the increasing demand for the validation of safety critical systems lead to the development of domain-specific programming languages (e.g. synchronous languages) and automatic verification tools (e.g. model checkers). Conventionally, the verification of a reactive system is implemented by specifying a discrete model of the system (i.e. a finite-state machine) and then checking this model against temporal properties (e.g. using an automata-based tool). We investigate the use of a theorem prover, Coq, for the specification of infinite state systems and for the verification of co-inductive properties.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0055148</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0556-4265</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 1998, p.387-399
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_2293600
source Springer Books
subjects Applied sciences
Computer Science
Computer science
control theory
systems
Embedded Systems
Exact sciences and technology
Large Relation
Model Check
Proof Assistant
Safety Critical System
Signal Program
Software
Software engineering
title Co-inductive axiomatization of a synchronous language
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A06%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Co-inductive%20axiomatization%20of%20a%20synchronous%20language&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Nowak,%20David&rft.date=1998-01-01&rft.spage=387&rft.epage=399&rft.pages=387-399&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540649875&rft.isbn_list=9783540649878&rft_id=info:doi/10.1007/BFb0055148&rft_dat=%3Chal_pasca%3Eoai_HAL_hal_00544505v1%3C/hal_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540498018&rft.eisbn_list=354049801X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true