Co-inductive axiomatization of a synchronous language
Over the last decade, the increasing demand for the validation of safety critical systems lead to the development of domain-specific programming languages (e.g. synchronous languages) and automatic verification tools (e.g. model checkers). Conventionally, the verification of a reactive system is imp...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 399 |
---|---|
container_issue | |
container_start_page | 387 |
container_title | |
container_volume | |
creator | Nowak, David Beauvais, Jean -René Talpin, Jean -Pierre |
description | Over the last decade, the increasing demand for the validation of safety critical systems lead to the development of domain-specific programming languages (e.g. synchronous languages) and automatic verification tools (e.g. model checkers). Conventionally, the verification of a reactive system is implemented by specifying a discrete model of the system (i.e. a finite-state machine) and then checking this model against temporal properties (e.g. using an automata-based tool). We investigate the use of a theorem prover, Coq, for the specification of infinite state systems and for the verification of co-inductive properties. |
doi_str_mv | 10.1007/BFb0055148 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_2293600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00544505v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h287t-aa6999fef675bab61af144288fc188fb1d469f3b733e883e80d6f70d4b20b7103</originalsourceid><addsrcrecordid>eNpFUMlOwzAQNZtEKb3wBTlwgENgHO9HqChFqsQFztY4idtAG1dxW1G-HkdFMNKbkeYth0fIFYU7CqDuHycOQAjK9REZGaWZ4MCNBqqPyYBKSnPGuDkhFz0hE6PEKRkAgyI3irNzMorxA9KwQlFpBkSMQ9601bbcNLs6w68mrHDTfCeENgs-wyzu23LRhTZsY7bEdr7FeX1JzjwuYz36vUPyPnl6G0_z2evzy_hhli8KrTY5ojTG-NpLJRw6SdFTzgutfUnTcrTi0njmFGO11glQSa-g4q4ApyiwIbk95C5waddds8JubwM2dvows_0vlcG5ALGjSXt90K4xlrj0HbZlE_9cRWGYhD7y5iCLiWnndWddCJ_RUrB9w_a_YfYDS6Rm6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Co-inductive axiomatization of a synchronous language</title><source>Springer Books</source><creator>Nowak, David ; Beauvais, Jean -René ; Talpin, Jean -Pierre</creator><contributor>Newey, Malcolm ; Grundy, Jim</contributor><creatorcontrib>Nowak, David ; Beauvais, Jean -René ; Talpin, Jean -Pierre ; Newey, Malcolm ; Grundy, Jim</creatorcontrib><description>Over the last decade, the increasing demand for the validation of safety critical systems lead to the development of domain-specific programming languages (e.g. synchronous languages) and automatic verification tools (e.g. model checkers). Conventionally, the verification of a reactive system is implemented by specifying a discrete model of the system (i.e. a finite-state machine) and then checking this model against temporal properties (e.g. using an automata-based tool). We investigate the use of a theorem prover, Coq, for the specification of infinite state systems and for the verification of co-inductive properties.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540649875</identifier><identifier>ISBN: 9783540649878</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540498018</identifier><identifier>EISBN: 354049801X</identifier><identifier>DOI: 10.1007/BFb0055148</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer Science ; Computer science; control theory; systems ; Embedded Systems ; Exact sciences and technology ; Large Relation ; Model Check ; Proof Assistant ; Safety Critical System ; Signal Program ; Software ; Software engineering</subject><ispartof>Lecture notes in computer science, 1998, p.387-399</ispartof><rights>Springer-Verlag Berlin Heidelberg 1998</rights><rights>1998 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0556-4265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0055148$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0055148$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,309,310,775,776,780,785,786,789,881,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2293600$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00544505$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Newey, Malcolm</contributor><contributor>Grundy, Jim</contributor><creatorcontrib>Nowak, David</creatorcontrib><creatorcontrib>Beauvais, Jean -René</creatorcontrib><creatorcontrib>Talpin, Jean -Pierre</creatorcontrib><title>Co-inductive axiomatization of a synchronous language</title><title>Lecture notes in computer science</title><description>Over the last decade, the increasing demand for the validation of safety critical systems lead to the development of domain-specific programming languages (e.g. synchronous languages) and automatic verification tools (e.g. model checkers). Conventionally, the verification of a reactive system is implemented by specifying a discrete model of the system (i.e. a finite-state machine) and then checking this model against temporal properties (e.g. using an automata-based tool). We investigate the use of a theorem prover, Coq, for the specification of infinite state systems and for the verification of co-inductive properties.</description><subject>Applied sciences</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Embedded Systems</subject><subject>Exact sciences and technology</subject><subject>Large Relation</subject><subject>Model Check</subject><subject>Proof Assistant</subject><subject>Safety Critical System</subject><subject>Signal Program</subject><subject>Software</subject><subject>Software engineering</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540649875</isbn><isbn>9783540649878</isbn><isbn>9783540498018</isbn><isbn>354049801X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFUMlOwzAQNZtEKb3wBTlwgENgHO9HqChFqsQFztY4idtAG1dxW1G-HkdFMNKbkeYth0fIFYU7CqDuHycOQAjK9REZGaWZ4MCNBqqPyYBKSnPGuDkhFz0hE6PEKRkAgyI3irNzMorxA9KwQlFpBkSMQ9601bbcNLs6w68mrHDTfCeENgs-wyzu23LRhTZsY7bEdr7FeX1JzjwuYz36vUPyPnl6G0_z2evzy_hhli8KrTY5ojTG-NpLJRw6SdFTzgutfUnTcrTi0njmFGO11glQSa-g4q4ApyiwIbk95C5waddds8JubwM2dvows_0vlcG5ALGjSXt90K4xlrj0HbZlE_9cRWGYhD7y5iCLiWnndWddCJ_RUrB9w_a_YfYDS6Rm6Q</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Nowak, David</creator><creator>Beauvais, Jean -René</creator><creator>Talpin, Jean -Pierre</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer-Verlag</general><scope>IQODW</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0556-4265</orcidid></search><sort><creationdate>19980101</creationdate><title>Co-inductive axiomatization of a synchronous language</title><author>Nowak, David ; Beauvais, Jean -René ; Talpin, Jean -Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h287t-aa6999fef675bab61af144288fc188fb1d469f3b733e883e80d6f70d4b20b7103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Embedded Systems</topic><topic>Exact sciences and technology</topic><topic>Large Relation</topic><topic>Model Check</topic><topic>Proof Assistant</topic><topic>Safety Critical System</topic><topic>Signal Program</topic><topic>Software</topic><topic>Software engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nowak, David</creatorcontrib><creatorcontrib>Beauvais, Jean -René</creatorcontrib><creatorcontrib>Talpin, Jean -Pierre</creatorcontrib><collection>Pascal-Francis</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nowak, David</au><au>Beauvais, Jean -René</au><au>Talpin, Jean -Pierre</au><au>Newey, Malcolm</au><au>Grundy, Jim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Co-inductive axiomatization of a synchronous language</atitle><btitle>Lecture notes in computer science</btitle><date>1998-01-01</date><risdate>1998</risdate><spage>387</spage><epage>399</epage><pages>387-399</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540649875</isbn><isbn>9783540649878</isbn><eisbn>9783540498018</eisbn><eisbn>354049801X</eisbn><abstract>Over the last decade, the increasing demand for the validation of safety critical systems lead to the development of domain-specific programming languages (e.g. synchronous languages) and automatic verification tools (e.g. model checkers). Conventionally, the verification of a reactive system is implemented by specifying a discrete model of the system (i.e. a finite-state machine) and then checking this model against temporal properties (e.g. using an automata-based tool). We investigate the use of a theorem prover, Coq, for the specification of infinite state systems and for the verification of co-inductive properties.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0055148</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0556-4265</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 1998, p.387-399 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_2293600 |
source | Springer Books |
subjects | Applied sciences Computer Science Computer science control theory systems Embedded Systems Exact sciences and technology Large Relation Model Check Proof Assistant Safety Critical System Signal Program Software Software engineering |
title | Co-inductive axiomatization of a synchronous language |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A06%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Co-inductive%20axiomatization%20of%20a%20synchronous%20language&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Nowak,%20David&rft.date=1998-01-01&rft.spage=387&rft.epage=399&rft.pages=387-399&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540649875&rft.isbn_list=9783540649878&rft_id=info:doi/10.1007/BFb0055148&rft_dat=%3Chal_pasca%3Eoai_HAL_hal_00544505v1%3C/hal_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540498018&rft.eisbn_list=354049801X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |