Image segmentation by label anisotropic diffusion

Weighing the difficulties of a symbolic description of 3D surface based scattered data, this article propounds a formalisation of the segmentation in discrete labelling terms. Global consistency of the result is expressed as a constraint satisfaction problem. To solve this problem, the method we pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chaine, Raphaëlle, Bouakaz, Saïda
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 547
container_issue
container_start_page 540
container_title
container_volume
creator Chaine, Raphaëlle
Bouakaz, Saïda
description Weighing the difficulties of a symbolic description of 3D surface based scattered data, this article propounds a formalisation of the segmentation in discrete labelling terms. Global consistency of the result is expressed as a constraint satisfaction problem. To solve this problem, the method we present is based on an anisotropic diffusion principle along two structures respectively denoted minimal and maximal escarpment trees. These structures are drawn from the graph theory. Novel aspect of our method is its ability to work on non organised points and to detect arbitrary topological types of features, as crease edge or boundaries between two smooth regions. The proposed approach makes possible an hybrid segmentation, involving the duality between regions and boundaries. The method has proven to be effective, as demonstrated below on both synthetical and real data.
doi_str_mv 10.1007/BFb0033277
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2291737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2291737</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1687-3929042cd93abd3f973354c8f9c72575de8ccbf1ada27631a824abe66a2ea5313</originalsourceid><addsrcrecordid>eNpFkDtPw0AQhI-XRBTc8AtcUNAYbm99rxIiApEi0UBtrc93lsGxLV8o8u85FKRMs8U3mh0NY7fAH4Bz_fi8rjlHFFqfscxqg7Lkykih5DlbgAIoEEt7cWKlkQYu2YIjF4XVJV6zLMYvnoQiRaoFg82OWp9H3-78sKd9Nw55fch7qn2f09DFcT-PU-fypgvhJyZ8w64C9dFn_3fJPtcvH6u3Yvv-ulk9bYsJlNEFWmF5KVxjkeoGg9WYOjkTrNNCatl441wdgBoSWiGQEWV6qhQJTxIBl-zumDtRdNSHmQbXxWqaux3Nh0oICxp1st0fbTGRofVzVY_jd6yAV3-jVafR8Bd2X1gy</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Image segmentation by label anisotropic diffusion</title><source>Springer Books</source><creator>Chaine, Raphaëlle ; Bouakaz, Saïda</creator><contributor>Pudil, Pavel ; Dori, Dov ; Freeman, Herbert ; Amin, Adnan</contributor><creatorcontrib>Chaine, Raphaëlle ; Bouakaz, Saïda ; Pudil, Pavel ; Dori, Dov ; Freeman, Herbert ; Amin, Adnan</creatorcontrib><description>Weighing the difficulties of a symbolic description of 3D surface based scattered data, this article propounds a formalisation of the segmentation in discrete labelling terms. Global consistency of the result is expressed as a constraint satisfaction problem. To solve this problem, the method we present is based on an anisotropic diffusion principle along two structures respectively denoted minimal and maximal escarpment trees. These structures are drawn from the graph theory. Novel aspect of our method is its ability to work on non organised points and to detect arbitrary topological types of features, as crease edge or boundaries between two smooth regions. The proposed approach makes possible an hybrid segmentation, involving the duality between regions and boundaries. The method has proven to be effective, as demonstrated below on both synthetical and real data.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540648581</identifier><identifier>ISBN: 3540648585</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540685265</identifier><identifier>EISBN: 354068526X</identifier><identifier>DOI: 10.1007/BFb0033277</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropic Diffusion ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Constraint Satisfaction Problem ; Exact sciences and technology ; Global Consistency ; Minimal Span Tree ; Pattern recognition. Digital image processing. Computational geometry ; Span Tree</subject><ispartof>Advances in Pattern Recognition, 2005, p.540-547</ispartof><rights>Springer-Verlag Berlin Heidelberg 1998</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0033277$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0033277$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2291737$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Pudil, Pavel</contributor><contributor>Dori, Dov</contributor><contributor>Freeman, Herbert</contributor><contributor>Amin, Adnan</contributor><creatorcontrib>Chaine, Raphaëlle</creatorcontrib><creatorcontrib>Bouakaz, Saïda</creatorcontrib><title>Image segmentation by label anisotropic diffusion</title><title>Advances in Pattern Recognition</title><description>Weighing the difficulties of a symbolic description of 3D surface based scattered data, this article propounds a formalisation of the segmentation in discrete labelling terms. Global consistency of the result is expressed as a constraint satisfaction problem. To solve this problem, the method we present is based on an anisotropic diffusion principle along two structures respectively denoted minimal and maximal escarpment trees. These structures are drawn from the graph theory. Novel aspect of our method is its ability to work on non organised points and to detect arbitrary topological types of features, as crease edge or boundaries between two smooth regions. The proposed approach makes possible an hybrid segmentation, involving the duality between regions and boundaries. The method has proven to be effective, as demonstrated below on both synthetical and real data.</description><subject>Anisotropic Diffusion</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Constraint Satisfaction Problem</subject><subject>Exact sciences and technology</subject><subject>Global Consistency</subject><subject>Minimal Span Tree</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Span Tree</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540648581</isbn><isbn>3540648585</isbn><isbn>9783540685265</isbn><isbn>354068526X</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkDtPw0AQhI-XRBTc8AtcUNAYbm99rxIiApEi0UBtrc93lsGxLV8o8u85FKRMs8U3mh0NY7fAH4Bz_fi8rjlHFFqfscxqg7Lkykih5DlbgAIoEEt7cWKlkQYu2YIjF4XVJV6zLMYvnoQiRaoFg82OWp9H3-78sKd9Nw55fch7qn2f09DFcT-PU-fypgvhJyZ8w64C9dFn_3fJPtcvH6u3Yvv-ulk9bYsJlNEFWmF5KVxjkeoGg9WYOjkTrNNCatl441wdgBoSWiGQEWV6qhQJTxIBl-zumDtRdNSHmQbXxWqaux3Nh0oICxp1st0fbTGRofVzVY_jd6yAV3-jVafR8Bd2X1gy</recordid><startdate>20050609</startdate><enddate>20050609</enddate><creator>Chaine, Raphaëlle</creator><creator>Bouakaz, Saïda</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>20050609</creationdate><title>Image segmentation by label anisotropic diffusion</title><author>Chaine, Raphaëlle ; Bouakaz, Saïda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1687-3929042cd93abd3f973354c8f9c72575de8ccbf1ada27631a824abe66a2ea5313</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anisotropic Diffusion</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Constraint Satisfaction Problem</topic><topic>Exact sciences and technology</topic><topic>Global Consistency</topic><topic>Minimal Span Tree</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Span Tree</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaine, Raphaëlle</creatorcontrib><creatorcontrib>Bouakaz, Saïda</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaine, Raphaëlle</au><au>Bouakaz, Saïda</au><au>Pudil, Pavel</au><au>Dori, Dov</au><au>Freeman, Herbert</au><au>Amin, Adnan</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Image segmentation by label anisotropic diffusion</atitle><btitle>Advances in Pattern Recognition</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2005-06-09</date><risdate>2005</risdate><spage>540</spage><epage>547</epage><pages>540-547</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540648581</isbn><isbn>3540648585</isbn><eisbn>9783540685265</eisbn><eisbn>354068526X</eisbn><abstract>Weighing the difficulties of a symbolic description of 3D surface based scattered data, this article propounds a formalisation of the segmentation in discrete labelling terms. Global consistency of the result is expressed as a constraint satisfaction problem. To solve this problem, the method we present is based on an anisotropic diffusion principle along two structures respectively denoted minimal and maximal escarpment trees. These structures are drawn from the graph theory. Novel aspect of our method is its ability to work on non organised points and to detect arbitrary topological types of features, as crease edge or boundaries between two smooth regions. The proposed approach makes possible an hybrid segmentation, involving the duality between regions and boundaries. The method has proven to be effective, as demonstrated below on both synthetical and real data.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0033277</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Pattern Recognition, 2005, p.540-547
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_2291737
source Springer Books
subjects Anisotropic Diffusion
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Constraint Satisfaction Problem
Exact sciences and technology
Global Consistency
Minimal Span Tree
Pattern recognition. Digital image processing. Computational geometry
Span Tree
title Image segmentation by label anisotropic diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Image%20segmentation%20by%20label%20anisotropic%20diffusion&rft.btitle=Advances%20in%20Pattern%20Recognition&rft.au=Chaine,%20Rapha%C3%ABlle&rft.date=2005-06-09&rft.spage=540&rft.epage=547&rft.pages=540-547&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540648581&rft.isbn_list=3540648585&rft_id=info:doi/10.1007/BFb0033277&rft_dat=%3Cpascalfrancis_sprin%3E2291737%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540685265&rft.eisbn_list=354068526X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true