Image segmentation by label anisotropic diffusion
Weighing the difficulties of a symbolic description of 3D surface based scattered data, this article propounds a formalisation of the segmentation in discrete labelling terms. Global consistency of the result is expressed as a constraint satisfaction problem. To solve this problem, the method we pre...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 547 |
---|---|
container_issue | |
container_start_page | 540 |
container_title | |
container_volume | |
creator | Chaine, Raphaëlle Bouakaz, Saïda |
description | Weighing the difficulties of a symbolic description of 3D surface based scattered data, this article propounds a formalisation of the segmentation in discrete labelling terms. Global consistency of the result is expressed as a constraint satisfaction problem. To solve this problem, the method we present is based on an anisotropic diffusion principle along two structures respectively denoted minimal and maximal escarpment trees. These structures are drawn from the graph theory. Novel aspect of our method is its ability to work on non organised points and to detect arbitrary topological types of features, as crease edge or boundaries between two smooth regions. The proposed approach makes possible an hybrid segmentation, involving the duality between regions and boundaries. The method has proven to be effective, as demonstrated below on both synthetical and real data. |
doi_str_mv | 10.1007/BFb0033277 |
format | Book Chapter |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2291737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2291737</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1687-3929042cd93abd3f973354c8f9c72575de8ccbf1ada27631a824abe66a2ea5313</originalsourceid><addsrcrecordid>eNpFkDtPw0AQhI-XRBTc8AtcUNAYbm99rxIiApEi0UBtrc93lsGxLV8o8u85FKRMs8U3mh0NY7fAH4Bz_fi8rjlHFFqfscxqg7Lkykih5DlbgAIoEEt7cWKlkQYu2YIjF4XVJV6zLMYvnoQiRaoFg82OWp9H3-78sKd9Nw55fch7qn2f09DFcT-PU-fypgvhJyZ8w64C9dFn_3fJPtcvH6u3Yvv-ulk9bYsJlNEFWmF5KVxjkeoGg9WYOjkTrNNCatl441wdgBoSWiGQEWV6qhQJTxIBl-zumDtRdNSHmQbXxWqaux3Nh0oICxp1st0fbTGRofVzVY_jd6yAV3-jVafR8Bd2X1gy</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Image segmentation by label anisotropic diffusion</title><source>Springer Books</source><creator>Chaine, Raphaëlle ; Bouakaz, Saïda</creator><contributor>Pudil, Pavel ; Dori, Dov ; Freeman, Herbert ; Amin, Adnan</contributor><creatorcontrib>Chaine, Raphaëlle ; Bouakaz, Saïda ; Pudil, Pavel ; Dori, Dov ; Freeman, Herbert ; Amin, Adnan</creatorcontrib><description>Weighing the difficulties of a symbolic description of 3D surface based scattered data, this article propounds a formalisation of the segmentation in discrete labelling terms. Global consistency of the result is expressed as a constraint satisfaction problem. To solve this problem, the method we present is based on an anisotropic diffusion principle along two structures respectively denoted minimal and maximal escarpment trees. These structures are drawn from the graph theory. Novel aspect of our method is its ability to work on non organised points and to detect arbitrary topological types of features, as crease edge or boundaries between two smooth regions. The proposed approach makes possible an hybrid segmentation, involving the duality between regions and boundaries. The method has proven to be effective, as demonstrated below on both synthetical and real data.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540648581</identifier><identifier>ISBN: 3540648585</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540685265</identifier><identifier>EISBN: 354068526X</identifier><identifier>DOI: 10.1007/BFb0033277</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropic Diffusion ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Constraint Satisfaction Problem ; Exact sciences and technology ; Global Consistency ; Minimal Span Tree ; Pattern recognition. Digital image processing. Computational geometry ; Span Tree</subject><ispartof>Advances in Pattern Recognition, 2005, p.540-547</ispartof><rights>Springer-Verlag Berlin Heidelberg 1998</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0033277$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0033277$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2291737$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Pudil, Pavel</contributor><contributor>Dori, Dov</contributor><contributor>Freeman, Herbert</contributor><contributor>Amin, Adnan</contributor><creatorcontrib>Chaine, Raphaëlle</creatorcontrib><creatorcontrib>Bouakaz, Saïda</creatorcontrib><title>Image segmentation by label anisotropic diffusion</title><title>Advances in Pattern Recognition</title><description>Weighing the difficulties of a symbolic description of 3D surface based scattered data, this article propounds a formalisation of the segmentation in discrete labelling terms. Global consistency of the result is expressed as a constraint satisfaction problem. To solve this problem, the method we present is based on an anisotropic diffusion principle along two structures respectively denoted minimal and maximal escarpment trees. These structures are drawn from the graph theory. Novel aspect of our method is its ability to work on non organised points and to detect arbitrary topological types of features, as crease edge or boundaries between two smooth regions. The proposed approach makes possible an hybrid segmentation, involving the duality between regions and boundaries. The method has proven to be effective, as demonstrated below on both synthetical and real data.</description><subject>Anisotropic Diffusion</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Constraint Satisfaction Problem</subject><subject>Exact sciences and technology</subject><subject>Global Consistency</subject><subject>Minimal Span Tree</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Span Tree</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540648581</isbn><isbn>3540648585</isbn><isbn>9783540685265</isbn><isbn>354068526X</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkDtPw0AQhI-XRBTc8AtcUNAYbm99rxIiApEi0UBtrc93lsGxLV8o8u85FKRMs8U3mh0NY7fAH4Bz_fi8rjlHFFqfscxqg7Lkykih5DlbgAIoEEt7cWKlkQYu2YIjF4XVJV6zLMYvnoQiRaoFg82OWp9H3-78sKd9Nw55fch7qn2f09DFcT-PU-fypgvhJyZ8w64C9dFn_3fJPtcvH6u3Yvv-ulk9bYsJlNEFWmF5KVxjkeoGg9WYOjkTrNNCatl441wdgBoSWiGQEWV6qhQJTxIBl-zumDtRdNSHmQbXxWqaux3Nh0oICxp1st0fbTGRofVzVY_jd6yAV3-jVafR8Bd2X1gy</recordid><startdate>20050609</startdate><enddate>20050609</enddate><creator>Chaine, Raphaëlle</creator><creator>Bouakaz, Saïda</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>20050609</creationdate><title>Image segmentation by label anisotropic diffusion</title><author>Chaine, Raphaëlle ; Bouakaz, Saïda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1687-3929042cd93abd3f973354c8f9c72575de8ccbf1ada27631a824abe66a2ea5313</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anisotropic Diffusion</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Constraint Satisfaction Problem</topic><topic>Exact sciences and technology</topic><topic>Global Consistency</topic><topic>Minimal Span Tree</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Span Tree</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaine, Raphaëlle</creatorcontrib><creatorcontrib>Bouakaz, Saïda</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaine, Raphaëlle</au><au>Bouakaz, Saïda</au><au>Pudil, Pavel</au><au>Dori, Dov</au><au>Freeman, Herbert</au><au>Amin, Adnan</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Image segmentation by label anisotropic diffusion</atitle><btitle>Advances in Pattern Recognition</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2005-06-09</date><risdate>2005</risdate><spage>540</spage><epage>547</epage><pages>540-547</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540648581</isbn><isbn>3540648585</isbn><eisbn>9783540685265</eisbn><eisbn>354068526X</eisbn><abstract>Weighing the difficulties of a symbolic description of 3D surface based scattered data, this article propounds a formalisation of the segmentation in discrete labelling terms. Global consistency of the result is expressed as a constraint satisfaction problem. To solve this problem, the method we present is based on an anisotropic diffusion principle along two structures respectively denoted minimal and maximal escarpment trees. These structures are drawn from the graph theory. Novel aspect of our method is its ability to work on non organised points and to detect arbitrary topological types of features, as crease edge or boundaries between two smooth regions. The proposed approach makes possible an hybrid segmentation, involving the duality between regions and boundaries. The method has proven to be effective, as demonstrated below on both synthetical and real data.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0033277</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Advances in Pattern Recognition, 2005, p.540-547 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_2291737 |
source | Springer Books |
subjects | Anisotropic Diffusion Applied sciences Artificial intelligence Computer science control theory systems Constraint Satisfaction Problem Exact sciences and technology Global Consistency Minimal Span Tree Pattern recognition. Digital image processing. Computational geometry Span Tree |
title | Image segmentation by label anisotropic diffusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Image%20segmentation%20by%20label%20anisotropic%20diffusion&rft.btitle=Advances%20in%20Pattern%20Recognition&rft.au=Chaine,%20Rapha%C3%ABlle&rft.date=2005-06-09&rft.spage=540&rft.epage=547&rft.pages=540-547&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540648581&rft.isbn_list=3540648585&rft_id=info:doi/10.1007/BFb0033277&rft_dat=%3Cpascalfrancis_sprin%3E2291737%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540685265&rft.eisbn_list=354068526X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |