Evolving robot behaviours with diffusing gas networks

This paper introduces a new type of artificial nervous system and shows that it is possible to use evolutionary computing techniques to find robot controllers based on them. The controllers are built from networks inspired by the modulatory effects of freely diffusing gases, especially nitric oxide,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Husbands, Phil
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue
container_start_page 71
container_title
container_volume
creator Husbands, Phil
description This paper introduces a new type of artificial nervous system and shows that it is possible to use evolutionary computing techniques to find robot controllers based on them. The controllers are built from networks inspired by the modulatory effects of freely diffusing gases, especially nitric oxide, in real neuronal networks. Using Jakobi's radical minimal simulations, successful behaviours have been consistently evolved in far fewer evaluations than were needed when using more conventional connectionist style networks. Indeed the reduction is by a factor of roughly one order of magnitude.
doi_str_mv 10.1007/3-540-64957-3_65
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2290854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2290854</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1385-9ef113cabd0899da885c5dddc7eb33ad83f43732829b73200c5d196d7e8cfd8a3</originalsourceid><addsrcrecordid>eNo9kEtvAiEUhekrqbHuu5xFt1jgwgDLxthHYtJNuybMADrVDgZ0TP99UZvezUnOd3IXH0L3lEwpIfIRsOAE11wLicHU4gJNtFRQSq41YewSjWhNKQbg-uqfnfb0Go0IEIa15HCLJjl_kXLASkdGSMyHuBm6flml2MRd1fiVHbq4T7k6dLtV5boQ9vnIlzZXvd8dYlrnO3QT7Cb7yV-O0efz_GP2ihfvL2-zpwXeUlACax8ohdY2jiitnVVKtMI510rfAFinIHCQwBTTTQlCCqW6dtKrNjhlYYwezn-3Nrd2E5Lt2y6bbeq-bfoxjGmiBC-z6XmWC-mXPpkmxnU2lJijPgOm2DAnHeaoD34BKmddFw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evolving robot behaviours with diffusing gas networks</title><source>Springer Books</source><creator>Husbands, Phil</creator><contributor>Husbands, Philip ; Meyer, Jean-Arcady</contributor><creatorcontrib>Husbands, Phil ; Husbands, Philip ; Meyer, Jean-Arcady</creatorcontrib><description>This paper introduces a new type of artificial nervous system and shows that it is possible to use evolutionary computing techniques to find robot controllers based on them. The controllers are built from networks inspired by the modulatory effects of freely diffusing gases, especially nitric oxide, in real neuronal networks. Using Jakobi's radical minimal simulations, successful behaviours have been consistently evolved in far fewer evaluations than were needed when using more conventional connectionist style networks. Indeed the reduction is by a factor of roughly one order of magnitude.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540649571</identifier><identifier>ISBN: 3540649573</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540499022</identifier><identifier>EISBN: 3540499024</identifier><identifier>DOI: 10.1007/3-540-64957-3_65</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Evolutionary Robotic ; Exact sciences and technology ; Negative Segment ; Recurrent Connection ; Robotics ; Successful Behaviour ; Successful Controller</subject><ispartof>Evolutionary Robotics, 2005, p.71-86</ispartof><rights>Springer-Verlag Berlin Heidelberg 1998</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-64957-3_65$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-64957-3_65$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2290854$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Husbands, Philip</contributor><contributor>Meyer, Jean-Arcady</contributor><creatorcontrib>Husbands, Phil</creatorcontrib><title>Evolving robot behaviours with diffusing gas networks</title><title>Evolutionary Robotics</title><description>This paper introduces a new type of artificial nervous system and shows that it is possible to use evolutionary computing techniques to find robot controllers based on them. The controllers are built from networks inspired by the modulatory effects of freely diffusing gases, especially nitric oxide, in real neuronal networks. Using Jakobi's radical minimal simulations, successful behaviours have been consistently evolved in far fewer evaluations than were needed when using more conventional connectionist style networks. Indeed the reduction is by a factor of roughly one order of magnitude.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Evolutionary Robotic</subject><subject>Exact sciences and technology</subject><subject>Negative Segment</subject><subject>Recurrent Connection</subject><subject>Robotics</subject><subject>Successful Behaviour</subject><subject>Successful Controller</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540649571</isbn><isbn>3540649573</isbn><isbn>9783540499022</isbn><isbn>3540499024</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9kEtvAiEUhekrqbHuu5xFt1jgwgDLxthHYtJNuybMADrVDgZ0TP99UZvezUnOd3IXH0L3lEwpIfIRsOAE11wLicHU4gJNtFRQSq41YewSjWhNKQbg-uqfnfb0Go0IEIa15HCLJjl_kXLASkdGSMyHuBm6flml2MRd1fiVHbq4T7k6dLtV5boQ9vnIlzZXvd8dYlrnO3QT7Cb7yV-O0efz_GP2ihfvL2-zpwXeUlACax8ohdY2jiitnVVKtMI510rfAFinIHCQwBTTTQlCCqW6dtKrNjhlYYwezn-3Nrd2E5Lt2y6bbeq-bfoxjGmiBC-z6XmWC-mXPpkmxnU2lJijPgOm2DAnHeaoD34BKmddFw</recordid><startdate>20050806</startdate><enddate>20050806</enddate><creator>Husbands, Phil</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>20050806</creationdate><title>Evolving robot behaviours with diffusing gas networks</title><author>Husbands, Phil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1385-9ef113cabd0899da885c5dddc7eb33ad83f43732829b73200c5d196d7e8cfd8a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Evolutionary Robotic</topic><topic>Exact sciences and technology</topic><topic>Negative Segment</topic><topic>Recurrent Connection</topic><topic>Robotics</topic><topic>Successful Behaviour</topic><topic>Successful Controller</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Husbands, Phil</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Husbands, Phil</au><au>Husbands, Philip</au><au>Meyer, Jean-Arcady</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evolving robot behaviours with diffusing gas networks</atitle><btitle>Evolutionary Robotics</btitle><date>2005-08-06</date><risdate>2005</risdate><spage>71</spage><epage>86</epage><pages>71-86</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540649571</isbn><isbn>3540649573</isbn><eisbn>9783540499022</eisbn><eisbn>3540499024</eisbn><abstract>This paper introduces a new type of artificial nervous system and shows that it is possible to use evolutionary computing techniques to find robot controllers based on them. The controllers are built from networks inspired by the modulatory effects of freely diffusing gases, especially nitric oxide, in real neuronal networks. Using Jakobi's radical minimal simulations, successful behaviours have been consistently evolved in far fewer evaluations than were needed when using more conventional connectionist style networks. Indeed the reduction is by a factor of roughly one order of magnitude.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/3-540-64957-3_65</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Evolutionary Robotics, 2005, p.71-86
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_2290854
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Control theory. Systems
Evolutionary Robotic
Exact sciences and technology
Negative Segment
Recurrent Connection
Robotics
Successful Behaviour
Successful Controller
title Evolving robot behaviours with diffusing gas networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evolving%20robot%20behaviours%20with%20diffusing%20gas%20networks&rft.btitle=Evolutionary%20Robotics&rft.au=Husbands,%20Phil&rft.date=2005-08-06&rft.spage=71&rft.epage=86&rft.pages=71-86&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540649571&rft.isbn_list=3540649573&rft_id=info:doi/10.1007/3-540-64957-3_65&rft_dat=%3Cpascalfrancis_sprin%3E2290854%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540499022&rft.eisbn_list=3540499024&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true