Evolutionary search for minimal elements in partially ordered finite sets

The task of finding minimal elements of a partially ordered set is a generalization of the task of finding the global minimum of a real-valued function or of finding Pareto-optimal points of a multicriteria optimization problem. It is shown that evolutionary algorithms are able to converge to the se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rudolph, Günter
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 353
container_issue
container_start_page 345
container_title
container_volume
creator Rudolph, Günter
description The task of finding minimal elements of a partially ordered set is a generalization of the task of finding the global minimum of a real-valued function or of finding Pareto-optimal points of a multicriteria optimization problem. It is shown that evolutionary algorithms are able to converge to the set of minimal elements in finite time with probability one, provided that the search space is finite, the time-invariant variation operator is associated with a positive transition probability function and that the selection operator obeys the so-called ‘elite preservation strategy.’
doi_str_mv 10.1007/BFb0040787
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2288725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288725</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1327-542e35e55de97a842426c44bbe942f8dea73b415ad76d481cefa81e3b0b48c2e3</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhM1Loiq98At84MAl4Mc6to9QtVCpEhc4R3aygYCbRHZA6r_HqEidyx7mm9VoCLnm7I4zpu8f154xYNroE7Kw2kgFrDSKK3tKZrzkvJAS7NnRA2O5OSczJpkorAZ5SRYpfbIsKSTjdkY2q58hfE_d0Lu4pwldrD9oO0S66_pu5wLFgDvsp0S7no4uTp0LYU-H2GDEhraZmjDnpnRFLloXEi7-75y8rVevy-di-_K0WT5si5FLoQsFAqVCpRq02hkQIMoawHu0IFrToNPSA1eu0WUDhtfYOsNReubB1Dk7JzeHv6NLtQttdH3dpWqMuW7cV0IYo4XK2O0BS9np3zFWfhi-UsVZ9TdmdRxT_gIiMmGt</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evolutionary search for minimal elements in partially ordered finite sets</title><source>Springer Books</source><creator>Rudolph, Günter</creator><contributor>Saravanan, N. ; Waagen, D. ; Porto, V. W. ; Eiben, A. E.</contributor><creatorcontrib>Rudolph, Günter ; Saravanan, N. ; Waagen, D. ; Porto, V. W. ; Eiben, A. E.</creatorcontrib><description>The task of finding minimal elements of a partially ordered set is a generalization of the task of finding the global minimum of a real-valued function or of finding Pareto-optimal points of a multicriteria optimization problem. It is shown that evolutionary algorithms are able to converge to the set of minimal elements in finite time with probability one, provided that the search space is finite, the time-invariant variation operator is associated with a positive transition probability function and that the selection operator obeys the so-called ‘elite preservation strategy.’</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540648918</identifier><identifier>ISBN: 3540648917</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540685159</identifier><identifier>EISBN: 3540685154</identifier><identifier>DOI: 10.1007/BFb0040787</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems</subject><ispartof>Evolutionary Programming VII, 2005, p.345-353</ispartof><rights>Springer-Verlag Berlin Heidelberg 1998</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0040787$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0040787$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2288725$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Saravanan, N.</contributor><contributor>Waagen, D.</contributor><contributor>Porto, V. W.</contributor><contributor>Eiben, A. E.</contributor><creatorcontrib>Rudolph, Günter</creatorcontrib><title>Evolutionary search for minimal elements in partially ordered finite sets</title><title>Evolutionary Programming VII</title><description>The task of finding minimal elements of a partially ordered set is a generalization of the task of finding the global minimum of a real-valued function or of finding Pareto-optimal points of a multicriteria optimization problem. It is shown that evolutionary algorithms are able to converge to the set of minimal elements in finite time with probability one, provided that the search space is finite, the time-invariant variation operator is associated with a positive transition probability function and that the selection operator obeys the so-called ‘elite preservation strategy.’</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540648918</isbn><isbn>3540648917</isbn><isbn>9783540685159</isbn><isbn>3540685154</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkEtPwzAQhM1Loiq98At84MAl4Mc6to9QtVCpEhc4R3aygYCbRHZA6r_HqEidyx7mm9VoCLnm7I4zpu8f154xYNroE7Kw2kgFrDSKK3tKZrzkvJAS7NnRA2O5OSczJpkorAZ5SRYpfbIsKSTjdkY2q58hfE_d0Lu4pwldrD9oO0S66_pu5wLFgDvsp0S7no4uTp0LYU-H2GDEhraZmjDnpnRFLloXEi7-75y8rVevy-di-_K0WT5si5FLoQsFAqVCpRq02hkQIMoawHu0IFrToNPSA1eu0WUDhtfYOsNReubB1Dk7JzeHv6NLtQttdH3dpWqMuW7cV0IYo4XK2O0BS9np3zFWfhi-UsVZ9TdmdRxT_gIiMmGt</recordid><startdate>20051210</startdate><enddate>20051210</enddate><creator>Rudolph, Günter</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>20051210</creationdate><title>Evolutionary search for minimal elements in partially ordered finite sets</title><author>Rudolph, Günter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1327-542e35e55de97a842426c44bbe942f8dea73b415ad76d481cefa81e3b0b48c2e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rudolph, Günter</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rudolph, Günter</au><au>Saravanan, N.</au><au>Waagen, D.</au><au>Porto, V. W.</au><au>Eiben, A. E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evolutionary search for minimal elements in partially ordered finite sets</atitle><btitle>Evolutionary Programming VII</btitle><date>2005-12-10</date><risdate>2005</risdate><spage>345</spage><epage>353</epage><pages>345-353</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540648918</isbn><isbn>3540648917</isbn><eisbn>9783540685159</eisbn><eisbn>3540685154</eisbn><abstract>The task of finding minimal elements of a partially ordered set is a generalization of the task of finding the global minimum of a real-valued function or of finding Pareto-optimal points of a multicriteria optimization problem. It is shown that evolutionary algorithms are able to converge to the set of minimal elements in finite time with probability one, provided that the search space is finite, the time-invariant variation operator is associated with a positive transition probability function and that the selection operator obeys the so-called ‘elite preservation strategy.’</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0040787</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Evolutionary Programming VII, 2005, p.345-353
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_2288725
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Learning and adaptive systems
title Evolutionary search for minimal elements in partially ordered finite sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evolutionary%20search%20for%20minimal%20elements%20in%20partially%20ordered%20finite%20sets&rft.btitle=Evolutionary%20Programming%20VII&rft.au=Rudolph,%20G%C3%BCnter&rft.date=2005-12-10&rft.spage=345&rft.epage=353&rft.pages=345-353&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540648918&rft.isbn_list=3540648917&rft_id=info:doi/10.1007/BFb0040787&rft_dat=%3Cpascalfrancis_sprin%3E2288725%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540685159&rft.eisbn_list=3540685154&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true