Evolutionary search for minimal elements in partially ordered finite sets
The task of finding minimal elements of a partially ordered set is a generalization of the task of finding the global minimum of a real-valued function or of finding Pareto-optimal points of a multicriteria optimization problem. It is shown that evolutionary algorithms are able to converge to the se...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 353 |
---|---|
container_issue | |
container_start_page | 345 |
container_title | |
container_volume | |
creator | Rudolph, Günter |
description | The task of finding minimal elements of a partially ordered set is a generalization of the task of finding the global minimum of a real-valued function or of finding Pareto-optimal points of a multicriteria optimization problem. It is shown that evolutionary algorithms are able to converge to the set of minimal elements in finite time with probability one, provided that the search space is finite, the time-invariant variation operator is associated with a positive transition probability function and that the selection operator obeys the so-called ‘elite preservation strategy.’ |
doi_str_mv | 10.1007/BFb0040787 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2288725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288725</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1327-542e35e55de97a842426c44bbe942f8dea73b415ad76d481cefa81e3b0b48c2e3</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhM1Loiq98At84MAl4Mc6to9QtVCpEhc4R3aygYCbRHZA6r_HqEidyx7mm9VoCLnm7I4zpu8f154xYNroE7Kw2kgFrDSKK3tKZrzkvJAS7NnRA2O5OSczJpkorAZ5SRYpfbIsKSTjdkY2q58hfE_d0Lu4pwldrD9oO0S66_pu5wLFgDvsp0S7no4uTp0LYU-H2GDEhraZmjDnpnRFLloXEi7-75y8rVevy-di-_K0WT5si5FLoQsFAqVCpRq02hkQIMoawHu0IFrToNPSA1eu0WUDhtfYOsNReubB1Dk7JzeHv6NLtQttdH3dpWqMuW7cV0IYo4XK2O0BS9np3zFWfhi-UsVZ9TdmdRxT_gIiMmGt</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evolutionary search for minimal elements in partially ordered finite sets</title><source>Springer Books</source><creator>Rudolph, Günter</creator><contributor>Saravanan, N. ; Waagen, D. ; Porto, V. W. ; Eiben, A. E.</contributor><creatorcontrib>Rudolph, Günter ; Saravanan, N. ; Waagen, D. ; Porto, V. W. ; Eiben, A. E.</creatorcontrib><description>The task of finding minimal elements of a partially ordered set is a generalization of the task of finding the global minimum of a real-valued function or of finding Pareto-optimal points of a multicriteria optimization problem. It is shown that evolutionary algorithms are able to converge to the set of minimal elements in finite time with probability one, provided that the search space is finite, the time-invariant variation operator is associated with a positive transition probability function and that the selection operator obeys the so-called ‘elite preservation strategy.’</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540648918</identifier><identifier>ISBN: 3540648917</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540685159</identifier><identifier>EISBN: 3540685154</identifier><identifier>DOI: 10.1007/BFb0040787</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems</subject><ispartof>Evolutionary Programming VII, 2005, p.345-353</ispartof><rights>Springer-Verlag Berlin Heidelberg 1998</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0040787$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0040787$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2288725$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Saravanan, N.</contributor><contributor>Waagen, D.</contributor><contributor>Porto, V. W.</contributor><contributor>Eiben, A. E.</contributor><creatorcontrib>Rudolph, Günter</creatorcontrib><title>Evolutionary search for minimal elements in partially ordered finite sets</title><title>Evolutionary Programming VII</title><description>The task of finding minimal elements of a partially ordered set is a generalization of the task of finding the global minimum of a real-valued function or of finding Pareto-optimal points of a multicriteria optimization problem. It is shown that evolutionary algorithms are able to converge to the set of minimal elements in finite time with probability one, provided that the search space is finite, the time-invariant variation operator is associated with a positive transition probability function and that the selection operator obeys the so-called ‘elite preservation strategy.’</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540648918</isbn><isbn>3540648917</isbn><isbn>9783540685159</isbn><isbn>3540685154</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkEtPwzAQhM1Loiq98At84MAl4Mc6to9QtVCpEhc4R3aygYCbRHZA6r_HqEidyx7mm9VoCLnm7I4zpu8f154xYNroE7Kw2kgFrDSKK3tKZrzkvJAS7NnRA2O5OSczJpkorAZ5SRYpfbIsKSTjdkY2q58hfE_d0Lu4pwldrD9oO0S66_pu5wLFgDvsp0S7no4uTp0LYU-H2GDEhraZmjDnpnRFLloXEi7-75y8rVevy-di-_K0WT5si5FLoQsFAqVCpRq02hkQIMoawHu0IFrToNPSA1eu0WUDhtfYOsNReubB1Dk7JzeHv6NLtQttdH3dpWqMuW7cV0IYo4XK2O0BS9np3zFWfhi-UsVZ9TdmdRxT_gIiMmGt</recordid><startdate>20051210</startdate><enddate>20051210</enddate><creator>Rudolph, Günter</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>20051210</creationdate><title>Evolutionary search for minimal elements in partially ordered finite sets</title><author>Rudolph, Günter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1327-542e35e55de97a842426c44bbe942f8dea73b415ad76d481cefa81e3b0b48c2e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rudolph, Günter</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rudolph, Günter</au><au>Saravanan, N.</au><au>Waagen, D.</au><au>Porto, V. W.</au><au>Eiben, A. E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evolutionary search for minimal elements in partially ordered finite sets</atitle><btitle>Evolutionary Programming VII</btitle><date>2005-12-10</date><risdate>2005</risdate><spage>345</spage><epage>353</epage><pages>345-353</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540648918</isbn><isbn>3540648917</isbn><eisbn>9783540685159</eisbn><eisbn>3540685154</eisbn><abstract>The task of finding minimal elements of a partially ordered set is a generalization of the task of finding the global minimum of a real-valued function or of finding Pareto-optimal points of a multicriteria optimization problem. It is shown that evolutionary algorithms are able to converge to the set of minimal elements in finite time with probability one, provided that the search space is finite, the time-invariant variation operator is associated with a positive transition probability function and that the selection operator obeys the so-called ‘elite preservation strategy.’</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0040787</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Evolutionary Programming VII, 2005, p.345-353 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_2288725 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Learning and adaptive systems |
title | Evolutionary search for minimal elements in partially ordered finite sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evolutionary%20search%20for%20minimal%20elements%20in%20partially%20ordered%20finite%20sets&rft.btitle=Evolutionary%20Programming%20VII&rft.au=Rudolph,%20G%C3%BCnter&rft.date=2005-12-10&rft.spage=345&rft.epage=353&rft.pages=345-353&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540648918&rft.isbn_list=3540648917&rft_id=info:doi/10.1007/BFb0040787&rft_dat=%3Cpascalfrancis_sprin%3E2288725%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540685159&rft.eisbn_list=3540685154&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |