Information filtering using the Riemannian SVD (R-SVD)

The Riemannian SVD (or R-SVD) is a recent nonlinear generalization of the SVD which has been used for specific applications in systems and control. This decomposition can be modified and used to formulate a filtering-based implementation of Latent Semantic Indexing (LSI) for conceptual information r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jiang, Eric P., Berry, Michael W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 395
container_issue
container_start_page 386
container_title
container_volume 1457
creator Jiang, Eric P.
Berry, Michael W.
description The Riemannian SVD (or R-SVD) is a recent nonlinear generalization of the SVD which has been used for specific applications in systems and control. This decomposition can be modified and used to formulate a filtering-based implementation of Latent Semantic Indexing (LSI) for conceptual information retrieval. With LSI, the underlying semantic structure of a collection is represented in k-dimensional space using a rank-k approximation to the corresponding (sparse) term-bydocument matrix. Updating LSI models based on user feedback can be accomplished using constraints modeled by the R-SVD of a low-rank approximation to the original term-by-document matrix.
doi_str_mv 10.1007/BFb0018555
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2288114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288114</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1305-31c7243c78cb8de9b6955e09580c9991d2fe0efec1b543c2ba7e3233753b424d3</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhM1LopRe-AU5cCiHwNprx_YRCoVKlZDK4xrZjgOG1onicuDfk6iVmMPOYT6tRkPIBYVrCiBv7uYWgCohxAE5Q8GhUAKRHZIRLSjNEbk-2gdcgZbHZAQILNeS4ymZpPQFvZAVUsgRKRaxbrqN2YYmZnVYb30X4kf2k4a7_fTZKviNiTGYmL2832fTVd7b1Tk5qc06-cnex-Rt_vA6e8qXz4-L2e0ybymCyJE6yTg6qZxVlde20EJ40EKB01rTitUefO0dtaLHmDXSI0OUAi1nvMIxudz9bU1yZl13JrqQyrYLG9P9lowpRSnvsekOS-1Q33elbZrvVFIoh83K_83wD5vsVss</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Information filtering using the Riemannian SVD (R-SVD)</title><source>Springer Books</source><creator>Jiang, Eric P. ; Berry, Michael W.</creator><contributor>Rolim, José ; Simon, Horst ; Ferreira, Alfonso ; Teng, Shang-Hua</contributor><creatorcontrib>Jiang, Eric P. ; Berry, Michael W. ; Rolim, José ; Simon, Horst ; Ferreira, Alfonso ; Teng, Shang-Hua</creatorcontrib><description>The Riemannian SVD (or R-SVD) is a recent nonlinear generalization of the SVD which has been used for specific applications in systems and control. This decomposition can be modified and used to formulate a filtering-based implementation of Latent Semantic Indexing (LSI) for conceptual information retrieval. With LSI, the underlying semantic structure of a collection is represented in k-dimensional space using a rank-k approximation to the corresponding (sparse) term-bydocument matrix. Updating LSI models based on user feedback can be accomplished using constraints modeled by the R-SVD of a low-rank approximation to the original term-by-document matrix.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540648097</identifier><identifier>ISBN: 9783540648093</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540685332</identifier><identifier>EISBN: 9783540685333</identifier><identifier>DOI: 10.1007/BFb0018555</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Information and communication sciences ; Information retrieval systems. Information and document management system ; Information science. Documentation ; Latent Semantic Indexing ; Relevance Feedback ; Sciences and techniques of general use ; Simulation ; Singular Value Decomposition ; Singular Vector ; Software ; System design and modelling ; Total Little Square</subject><ispartof>Lecture notes in computer science, 2005, Vol.1457, p.386-395</ispartof><rights>Springer-Verlag Berlin Heidelberg 1998</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0018555$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0018555$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2288114$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Rolim, José</contributor><contributor>Simon, Horst</contributor><contributor>Ferreira, Alfonso</contributor><contributor>Teng, Shang-Hua</contributor><creatorcontrib>Jiang, Eric P.</creatorcontrib><creatorcontrib>Berry, Michael W.</creatorcontrib><title>Information filtering using the Riemannian SVD (R-SVD)</title><title>Lecture notes in computer science</title><description>The Riemannian SVD (or R-SVD) is a recent nonlinear generalization of the SVD which has been used for specific applications in systems and control. This decomposition can be modified and used to formulate a filtering-based implementation of Latent Semantic Indexing (LSI) for conceptual information retrieval. With LSI, the underlying semantic structure of a collection is represented in k-dimensional space using a rank-k approximation to the corresponding (sparse) term-bydocument matrix. Updating LSI models based on user feedback can be accomplished using constraints modeled by the R-SVD of a low-rank approximation to the original term-by-document matrix.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information and communication sciences</subject><subject>Information retrieval systems. Information and document management system</subject><subject>Information science. Documentation</subject><subject>Latent Semantic Indexing</subject><subject>Relevance Feedback</subject><subject>Sciences and techniques of general use</subject><subject>Simulation</subject><subject>Singular Value Decomposition</subject><subject>Singular Vector</subject><subject>Software</subject><subject>System design and modelling</subject><subject>Total Little Square</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540648097</isbn><isbn>9783540648093</isbn><isbn>3540685332</isbn><isbn>9783540685333</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkEtPwzAQhM1LopRe-AU5cCiHwNprx_YRCoVKlZDK4xrZjgOG1onicuDfk6iVmMPOYT6tRkPIBYVrCiBv7uYWgCohxAE5Q8GhUAKRHZIRLSjNEbk-2gdcgZbHZAQILNeS4ymZpPQFvZAVUsgRKRaxbrqN2YYmZnVYb30X4kf2k4a7_fTZKviNiTGYmL2832fTVd7b1Tk5qc06-cnex-Rt_vA6e8qXz4-L2e0ybymCyJE6yTg6qZxVlde20EJ40EKB01rTitUefO0dtaLHmDXSI0OUAi1nvMIxudz9bU1yZl13JrqQyrYLG9P9lowpRSnvsekOS-1Q33elbZrvVFIoh83K_83wD5vsVss</recordid><startdate>20050609</startdate><enddate>20050609</enddate><creator>Jiang, Eric P.</creator><creator>Berry, Michael W.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>20050609</creationdate><title>Information filtering using the Riemannian SVD (R-SVD)</title><author>Jiang, Eric P. ; Berry, Michael W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1305-31c7243c78cb8de9b6955e09580c9991d2fe0efec1b543c2ba7e3233753b424d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information and communication sciences</topic><topic>Information retrieval systems. Information and document management system</topic><topic>Information science. Documentation</topic><topic>Latent Semantic Indexing</topic><topic>Relevance Feedback</topic><topic>Sciences and techniques of general use</topic><topic>Simulation</topic><topic>Singular Value Decomposition</topic><topic>Singular Vector</topic><topic>Software</topic><topic>System design and modelling</topic><topic>Total Little Square</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Eric P.</creatorcontrib><creatorcontrib>Berry, Michael W.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Eric P.</au><au>Berry, Michael W.</au><au>Rolim, José</au><au>Simon, Horst</au><au>Ferreira, Alfonso</au><au>Teng, Shang-Hua</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Information filtering using the Riemannian SVD (R-SVD)</atitle><btitle>Lecture notes in computer science</btitle><date>2005-06-09</date><risdate>2005</risdate><volume>1457</volume><spage>386</spage><epage>395</epage><pages>386-395</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540648097</isbn><isbn>9783540648093</isbn><eisbn>3540685332</eisbn><eisbn>9783540685333</eisbn><abstract>The Riemannian SVD (or R-SVD) is a recent nonlinear generalization of the SVD which has been used for specific applications in systems and control. This decomposition can be modified and used to formulate a filtering-based implementation of Latent Semantic Indexing (LSI) for conceptual information retrieval. With LSI, the underlying semantic structure of a collection is represented in k-dimensional space using a rank-k approximation to the corresponding (sparse) term-bydocument matrix. Updating LSI models based on user feedback can be accomplished using constraints modeled by the R-SVD of a low-rank approximation to the original term-by-document matrix.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0018555</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, Vol.1457, p.386-395
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_2288114
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Information and communication sciences
Information retrieval systems. Information and document management system
Information science. Documentation
Latent Semantic Indexing
Relevance Feedback
Sciences and techniques of general use
Simulation
Singular Value Decomposition
Singular Vector
Software
System design and modelling
Total Little Square
title Information filtering using the Riemannian SVD (R-SVD)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Information%20filtering%20using%20the%20Riemannian%20SVD%20(R-SVD)&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Jiang,%20Eric%20P.&rft.date=2005-06-09&rft.volume=1457&rft.spage=386&rft.epage=395&rft.pages=386-395&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540648097&rft.isbn_list=9783540648093&rft_id=info:doi/10.1007/BFb0018555&rft_dat=%3Cpascalfrancis_sprin%3E2288114%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540685332&rft.eisbn_list=9783540685333&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true