Learning regular grammars to model musical style: Comparing different coding schemes

An application of Grammatical Inference (GI) in the field of Music Processing is presented, were Regular Grammars are used for modeling musical style. The interest in modeling musical style resides in the use of these models in applications, such as Automatic Composition and Automatic Musical Style...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cruz-Alcázar, Pedro P., Vidal-Ruiz, Enrique
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222
container_issue
container_start_page 211
container_title
container_volume
creator Cruz-Alcázar, Pedro P.
Vidal-Ruiz, Enrique
description An application of Grammatical Inference (GI) in the field of Music Processing is presented, were Regular Grammars are used for modeling musical style. The interest in modeling musical style resides in the use of these models in applications, such as Automatic Composition and Automatic Musical Style Recognition. We have studied three GI Algorithms, which have been previously applied successfully in other fields. In this work, these algorithms have been used to learn a stochastic grammar for each of three different musical styles from examples of melodies. Then, each of the learned grammars was used to stochastically synthesize new melodies (Composition) or to classify test melodies (Style Recognition). Our previous studies in this field showed the need of a proper music coding scheme. Different coding schemes are presented and compared according to results in Composition and Style Recognition. Results from previous studies have been improved.
doi_str_mv 10.1007/BFb0054077
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2287466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1737-a1130516d62aff3eec35ee66b14fe61f4a4076890befd0789f5ec0aaa232c3cb3</originalsourceid><addsrcrecordid>eNpFUMtOw0AMXF4SpfTCF-yBA5eAN052E25QUUCqxKWcI2fjLYG8tFsO_XsStRK-2LLHo5kR4kbBvQIwD8-rEiBNwJgTcYXjoDMDRp-KmdJKRYhJfnY8JMZocy5mgBBHuUnwUixC-IaxMMbU5DOxWTP5ru620vP2tyEvt57alnyQu162fcWNbH9DbamRYbdv-FEu-3YgP71UtXPsudtJ21fTItgvbjlciwtHTeDFsc_F5-pls3yL1h-v78undWSVQRORUgip0pWOyTlktpgya12qxLFWLqHRpc5yKNlVYLLcpWyBiGKMLdoS5-L2wDtQGAU6T52tQzH4ejSwL-I4M4nWI-zuAAvDJJt9Ufb9TygUFFOixX-i-AcfV2Rm</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning regular grammars to model musical style: Comparing different coding schemes</title><source>Springer Books</source><creator>Cruz-Alcázar, Pedro P. ; Vidal-Ruiz, Enrique</creator><contributor>Honavar, Vasant ; Slutzki, Giora</contributor><creatorcontrib>Cruz-Alcázar, Pedro P. ; Vidal-Ruiz, Enrique ; Honavar, Vasant ; Slutzki, Giora</creatorcontrib><description>An application of Grammatical Inference (GI) in the field of Music Processing is presented, were Regular Grammars are used for modeling musical style. The interest in modeling musical style resides in the use of these models in applications, such as Automatic Composition and Automatic Musical Style Recognition. We have studied three GI Algorithms, which have been previously applied successfully in other fields. In this work, these algorithms have been used to learn a stochastic grammar for each of three different musical styles from examples of melodies. Then, each of the learned grammars was used to stochastically synthesize new melodies (Composition) or to classify test melodies (Style Recognition). Our previous studies in this field showed the need of a proper music coding scheme. Different coding schemes are presented and compared according to results in Composition and Style Recognition. Results from previous studies have been improved.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540647767</identifier><identifier>ISBN: 9783540647768</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540687076</identifier><identifier>EISBN: 9783540687078</identifier><identifier>DOI: 10.1007/BFb0054077</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Average Success Rate ; Code Scheme ; Computer science; control theory; systems ; Exact sciences and technology ; Grammatical Inference ; Musical Style ; Speech and sound recognition and synthesis. Linguistics ; Symbol String</subject><ispartof>Grammatical Inference, 2006, p.211-222</ispartof><rights>Springer-Verlag Berlin Heidelberg 1998</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1737-a1130516d62aff3eec35ee66b14fe61f4a4076890befd0789f5ec0aaa232c3cb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0054077$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0054077$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2287466$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Honavar, Vasant</contributor><contributor>Slutzki, Giora</contributor><creatorcontrib>Cruz-Alcázar, Pedro P.</creatorcontrib><creatorcontrib>Vidal-Ruiz, Enrique</creatorcontrib><title>Learning regular grammars to model musical style: Comparing different coding schemes</title><title>Grammatical Inference</title><description>An application of Grammatical Inference (GI) in the field of Music Processing is presented, were Regular Grammars are used for modeling musical style. The interest in modeling musical style resides in the use of these models in applications, such as Automatic Composition and Automatic Musical Style Recognition. We have studied three GI Algorithms, which have been previously applied successfully in other fields. In this work, these algorithms have been used to learn a stochastic grammar for each of three different musical styles from examples of melodies. Then, each of the learned grammars was used to stochastically synthesize new melodies (Composition) or to classify test melodies (Style Recognition). Our previous studies in this field showed the need of a proper music coding scheme. Different coding schemes are presented and compared according to results in Composition and Style Recognition. Results from previous studies have been improved.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Average Success Rate</subject><subject>Code Scheme</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Grammatical Inference</subject><subject>Musical Style</subject><subject>Speech and sound recognition and synthesis. Linguistics</subject><subject>Symbol String</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540647767</isbn><isbn>9783540647768</isbn><isbn>3540687076</isbn><isbn>9783540687078</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFUMtOw0AMXF4SpfTCF-yBA5eAN052E25QUUCqxKWcI2fjLYG8tFsO_XsStRK-2LLHo5kR4kbBvQIwD8-rEiBNwJgTcYXjoDMDRp-KmdJKRYhJfnY8JMZocy5mgBBHuUnwUixC-IaxMMbU5DOxWTP5ru620vP2tyEvt57alnyQu162fcWNbH9DbamRYbdv-FEu-3YgP71UtXPsudtJ21fTItgvbjlciwtHTeDFsc_F5-pls3yL1h-v78undWSVQRORUgip0pWOyTlktpgya12qxLFWLqHRpc5yKNlVYLLcpWyBiGKMLdoS5-L2wDtQGAU6T52tQzH4ejSwL-I4M4nWI-zuAAvDJJt9Ufb9TygUFFOixX-i-AcfV2Rm</recordid><startdate>20060523</startdate><enddate>20060523</enddate><creator>Cruz-Alcázar, Pedro P.</creator><creator>Vidal-Ruiz, Enrique</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>20060523</creationdate><title>Learning regular grammars to model musical style: Comparing different coding schemes</title><author>Cruz-Alcázar, Pedro P. ; Vidal-Ruiz, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1737-a1130516d62aff3eec35ee66b14fe61f4a4076890befd0789f5ec0aaa232c3cb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Average Success Rate</topic><topic>Code Scheme</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Grammatical Inference</topic><topic>Musical Style</topic><topic>Speech and sound recognition and synthesis. Linguistics</topic><topic>Symbol String</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cruz-Alcázar, Pedro P.</creatorcontrib><creatorcontrib>Vidal-Ruiz, Enrique</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cruz-Alcázar, Pedro P.</au><au>Vidal-Ruiz, Enrique</au><au>Honavar, Vasant</au><au>Slutzki, Giora</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning regular grammars to model musical style: Comparing different coding schemes</atitle><btitle>Grammatical Inference</btitle><date>2006-05-23</date><risdate>2006</risdate><spage>211</spage><epage>222</epage><pages>211-222</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540647767</isbn><isbn>9783540647768</isbn><eisbn>3540687076</eisbn><eisbn>9783540687078</eisbn><abstract>An application of Grammatical Inference (GI) in the field of Music Processing is presented, were Regular Grammars are used for modeling musical style. The interest in modeling musical style resides in the use of these models in applications, such as Automatic Composition and Automatic Musical Style Recognition. We have studied three GI Algorithms, which have been previously applied successfully in other fields. In this work, these algorithms have been used to learn a stochastic grammar for each of three different musical styles from examples of melodies. Then, each of the learned grammars was used to stochastically synthesize new melodies (Composition) or to classify test melodies (Style Recognition). Our previous studies in this field showed the need of a proper music coding scheme. Different coding schemes are presented and compared according to results in Composition and Style Recognition. Results from previous studies have been improved.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0054077</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Grammatical Inference, 2006, p.211-222
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_2287466
source Springer Books
subjects Applied sciences
Artificial intelligence
Average Success Rate
Code Scheme
Computer science
control theory
systems
Exact sciences and technology
Grammatical Inference
Musical Style
Speech and sound recognition and synthesis. Linguistics
Symbol String
title Learning regular grammars to model musical style: Comparing different coding schemes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20regular%20grammars%20to%20model%20musical%20style:%20Comparing%20different%20coding%20schemes&rft.btitle=Grammatical%20Inference&rft.au=Cruz-Alc%C3%A1zar,%20Pedro%20P.&rft.date=2006-05-23&rft.spage=211&rft.epage=222&rft.pages=211-222&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540647767&rft.isbn_list=9783540647768&rft_id=info:doi/10.1007/BFb0054077&rft_dat=%3Cpascalfrancis_sprin%3E2287466%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540687076&rft.eisbn_list=9783540687078&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true