Accurate EM-Based Modeling of Cascode FETs

Cascode field-effect transistors (FETs) are widely used in the design of monolithic microwave integrated circuits (MMICs), owing to their almost unilateral and broadband behavior. However, since a dedicated model of the cell is rarely provided by foundries, a suboptimal description built by replicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2010-04, Vol.58 (4), p.719-729
Hauptverfasser: Resca, Davide, Lonac, Julio A., Cignani, Rafael, Raffo, Antonio, Santarelli, Alberto, Vannini, Giorgio, Filicori, Fabio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 729
container_issue 4
container_start_page 719
container_title IEEE transactions on microwave theory and techniques
container_volume 58
creator Resca, Davide
Lonac, Julio A.
Cignani, Rafael
Raffo, Antonio
Santarelli, Alberto
Vannini, Giorgio
Filicori, Fabio
description Cascode field-effect transistors (FETs) are widely used in the design of monolithic microwave integrated circuits (MMICs), owing to their almost unilateral and broadband behavior. However, since a dedicated model of the cell is rarely provided by foundries, a suboptimal description built by replicating the standard foundry model for both the common source and common gate device is often adopted. This might limit the success of the MMIC design at the first foundry run. This paper describes an electromagnetic-based empirical model of cascode cells, covering topics from the formulation and identification procedures to the corresponding validation described in an exhaustive experimental section. A MMIC low-noise distributed amplifier case is then presented and the proposed model is used for circuit analysis and instability detection. Clear indication is provided about the improvement in the prediction of critical behaviors with respect to conventional modeling approaches. A cascode cell with a symmetric layout is also successfully modeled.
doi_str_mv 10.1109/TMTT.2010.2041576
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_22729508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5427062</ieee_id><sourcerecordid>753734855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-ee358ae174b50f955c9607820636d74b792521d525a5bea14f016b754210dcd53</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKs_QLwsiAjC1kmyk-wea6kf0OJlPYc0Oytbtt2adA_-e7O09OBpeGeeGZKHsVsOE86heC6XZTkREKOAjKNWZ2zEEXVaKA3nbATA87TIcrhkVyGsY8wQ8hF7mjrXe7unZL5MX2ygKll2FbXN9jvp6mRmg4sxeZ2X4Zpd1LYNdHOsY_YV27P3dPH59jGbLlInEfcpkcTcEtfZCqEuEF2hQOcClFRVbOpCoOAVCrS4IsuzGrhaacwEh8pVKMfs8XB357ufnsLebJrgqG3tlro-GI1SyyzHgbz_R6673m_j4wwHoblSKAeKHyjnuxA81Wbnm431vxEygzwzyDODPHOUF3cejpejANvW3m5dE06LQmhRRH-RuztwDRGdxvEvGpSQfxcGcz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027166535</pqid></control><display><type>article</type><title>Accurate EM-Based Modeling of Cascode FETs</title><source>IEEE Electronic Library (IEL)</source><creator>Resca, Davide ; Lonac, Julio A. ; Cignani, Rafael ; Raffo, Antonio ; Santarelli, Alberto ; Vannini, Giorgio ; Filicori, Fabio</creator><creatorcontrib>Resca, Davide ; Lonac, Julio A. ; Cignani, Rafael ; Raffo, Antonio ; Santarelli, Alberto ; Vannini, Giorgio ; Filicori, Fabio</creatorcontrib><description>Cascode field-effect transistors (FETs) are widely used in the design of monolithic microwave integrated circuits (MMICs), owing to their almost unilateral and broadband behavior. However, since a dedicated model of the cell is rarely provided by foundries, a suboptimal description built by replicating the standard foundry model for both the common source and common gate device is often adopted. This might limit the success of the MMIC design at the first foundry run. This paper describes an electromagnetic-based empirical model of cascode cells, covering topics from the formulation and identification procedures to the corresponding validation described in an exhaustive experimental section. A MMIC low-noise distributed amplifier case is then presented and the proposed model is used for circuit analysis and instability detection. Clear indication is provided about the improvement in the prediction of critical behaviors with respect to conventional modeling approaches. A cascode cell with a symmetric layout is also successfully modeled.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2010.2041576</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Amplifiers ; Applied sciences ; Broadband ; Circuit analysis ; Circuit properties ; Design. Technologies. Operation analysis. Testing ; Devices ; Distributed amplifiers ; Electric, optical and optoelectronic circuits ; Electromagnetic (EM) analysis ; Electromagnetic modeling ; Electronic circuits ; Electronics ; Exact sciences and technology ; Field effect MMICs ; Foundries ; Gating and risering ; Integrated circuits ; Mathematical models ; Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits ; Microwave devices ; Microwave FET integrated circuits ; microwave field-effect transistors (FETs) ; Microwave integrated circuits ; Microwaves ; Monolithic integrated circuits ; monolithic microwave integrated circuits (MMICs) ; Predictive models ; semiconductor device modeling ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Theoretical study. Circuits analysis and design</subject><ispartof>IEEE transactions on microwave theory and techniques, 2010-04, Vol.58 (4), p.719-729</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-ee358ae174b50f955c9607820636d74b792521d525a5bea14f016b754210dcd53</citedby><cites>FETCH-LOGICAL-c355t-ee358ae174b50f955c9607820636d74b792521d525a5bea14f016b754210dcd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5427062$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5427062$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22729508$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Resca, Davide</creatorcontrib><creatorcontrib>Lonac, Julio A.</creatorcontrib><creatorcontrib>Cignani, Rafael</creatorcontrib><creatorcontrib>Raffo, Antonio</creatorcontrib><creatorcontrib>Santarelli, Alberto</creatorcontrib><creatorcontrib>Vannini, Giorgio</creatorcontrib><creatorcontrib>Filicori, Fabio</creatorcontrib><title>Accurate EM-Based Modeling of Cascode FETs</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>Cascode field-effect transistors (FETs) are widely used in the design of monolithic microwave integrated circuits (MMICs), owing to their almost unilateral and broadband behavior. However, since a dedicated model of the cell is rarely provided by foundries, a suboptimal description built by replicating the standard foundry model for both the common source and common gate device is often adopted. This might limit the success of the MMIC design at the first foundry run. This paper describes an electromagnetic-based empirical model of cascode cells, covering topics from the formulation and identification procedures to the corresponding validation described in an exhaustive experimental section. A MMIC low-noise distributed amplifier case is then presented and the proposed model is used for circuit analysis and instability detection. Clear indication is provided about the improvement in the prediction of critical behaviors with respect to conventional modeling approaches. A cascode cell with a symmetric layout is also successfully modeled.</description><subject>Amplifiers</subject><subject>Applied sciences</subject><subject>Broadband</subject><subject>Circuit analysis</subject><subject>Circuit properties</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Distributed amplifiers</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electromagnetic (EM) analysis</subject><subject>Electromagnetic modeling</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Field effect MMICs</subject><subject>Foundries</subject><subject>Gating and risering</subject><subject>Integrated circuits</subject><subject>Mathematical models</subject><subject>Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits</subject><subject>Microwave devices</subject><subject>Microwave FET integrated circuits</subject><subject>microwave field-effect transistors (FETs)</subject><subject>Microwave integrated circuits</subject><subject>Microwaves</subject><subject>Monolithic integrated circuits</subject><subject>monolithic microwave integrated circuits (MMICs)</subject><subject>Predictive models</subject><subject>semiconductor device modeling</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Theoretical study. Circuits analysis and design</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKs_QLwsiAjC1kmyk-wea6kf0OJlPYc0Oytbtt2adA_-e7O09OBpeGeeGZKHsVsOE86heC6XZTkREKOAjKNWZ2zEEXVaKA3nbATA87TIcrhkVyGsY8wQ8hF7mjrXe7unZL5MX2ygKll2FbXN9jvp6mRmg4sxeZ2X4Zpd1LYNdHOsY_YV27P3dPH59jGbLlInEfcpkcTcEtfZCqEuEF2hQOcClFRVbOpCoOAVCrS4IsuzGrhaacwEh8pVKMfs8XB357ufnsLebJrgqG3tlro-GI1SyyzHgbz_R6673m_j4wwHoblSKAeKHyjnuxA81Wbnm431vxEygzwzyDODPHOUF3cejpejANvW3m5dE06LQmhRRH-RuztwDRGdxvEvGpSQfxcGcz8</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Resca, Davide</creator><creator>Lonac, Julio A.</creator><creator>Cignani, Rafael</creator><creator>Raffo, Antonio</creator><creator>Santarelli, Alberto</creator><creator>Vannini, Giorgio</creator><creator>Filicori, Fabio</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100401</creationdate><title>Accurate EM-Based Modeling of Cascode FETs</title><author>Resca, Davide ; Lonac, Julio A. ; Cignani, Rafael ; Raffo, Antonio ; Santarelli, Alberto ; Vannini, Giorgio ; Filicori, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-ee358ae174b50f955c9607820636d74b792521d525a5bea14f016b754210dcd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amplifiers</topic><topic>Applied sciences</topic><topic>Broadband</topic><topic>Circuit analysis</topic><topic>Circuit properties</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Distributed amplifiers</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electromagnetic (EM) analysis</topic><topic>Electromagnetic modeling</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Field effect MMICs</topic><topic>Foundries</topic><topic>Gating and risering</topic><topic>Integrated circuits</topic><topic>Mathematical models</topic><topic>Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits</topic><topic>Microwave devices</topic><topic>Microwave FET integrated circuits</topic><topic>microwave field-effect transistors (FETs)</topic><topic>Microwave integrated circuits</topic><topic>Microwaves</topic><topic>Monolithic integrated circuits</topic><topic>monolithic microwave integrated circuits (MMICs)</topic><topic>Predictive models</topic><topic>semiconductor device modeling</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Theoretical study. Circuits analysis and design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Resca, Davide</creatorcontrib><creatorcontrib>Lonac, Julio A.</creatorcontrib><creatorcontrib>Cignani, Rafael</creatorcontrib><creatorcontrib>Raffo, Antonio</creatorcontrib><creatorcontrib>Santarelli, Alberto</creatorcontrib><creatorcontrib>Vannini, Giorgio</creatorcontrib><creatorcontrib>Filicori, Fabio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Resca, Davide</au><au>Lonac, Julio A.</au><au>Cignani, Rafael</au><au>Raffo, Antonio</au><au>Santarelli, Alberto</au><au>Vannini, Giorgio</au><au>Filicori, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate EM-Based Modeling of Cascode FETs</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>58</volume><issue>4</issue><spage>719</spage><epage>729</epage><pages>719-729</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>Cascode field-effect transistors (FETs) are widely used in the design of monolithic microwave integrated circuits (MMICs), owing to their almost unilateral and broadband behavior. However, since a dedicated model of the cell is rarely provided by foundries, a suboptimal description built by replicating the standard foundry model for both the common source and common gate device is often adopted. This might limit the success of the MMIC design at the first foundry run. This paper describes an electromagnetic-based empirical model of cascode cells, covering topics from the formulation and identification procedures to the corresponding validation described in an exhaustive experimental section. A MMIC low-noise distributed amplifier case is then presented and the proposed model is used for circuit analysis and instability detection. Clear indication is provided about the improvement in the prediction of critical behaviors with respect to conventional modeling approaches. A cascode cell with a symmetric layout is also successfully modeled.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMTT.2010.2041576</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2010-04, Vol.58 (4), p.719-729
issn 0018-9480
1557-9670
language eng
recordid cdi_pascalfrancis_primary_22729508
source IEEE Electronic Library (IEL)
subjects Amplifiers
Applied sciences
Broadband
Circuit analysis
Circuit properties
Design. Technologies. Operation analysis. Testing
Devices
Distributed amplifiers
Electric, optical and optoelectronic circuits
Electromagnetic (EM) analysis
Electromagnetic modeling
Electronic circuits
Electronics
Exact sciences and technology
Field effect MMICs
Foundries
Gating and risering
Integrated circuits
Mathematical models
Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits
Microwave devices
Microwave FET integrated circuits
microwave field-effect transistors (FETs)
Microwave integrated circuits
Microwaves
Monolithic integrated circuits
monolithic microwave integrated circuits (MMICs)
Predictive models
semiconductor device modeling
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Theoretical study. Circuits analysis and design
title Accurate EM-Based Modeling of Cascode FETs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A47%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20EM-Based%20Modeling%20of%20Cascode%20FETs&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Resca,%20Davide&rft.date=2010-04-01&rft.volume=58&rft.issue=4&rft.spage=719&rft.epage=729&rft.pages=719-729&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2010.2041576&rft_dat=%3Cproquest_RIE%3E753734855%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027166535&rft_id=info:pmid/&rft_ieee_id=5427062&rfr_iscdi=true