Embedding Calderón Multiplicative Preconditioners in Multilevel Fast Multipole Algorithms
Calderon preconditioners have recently been demonstrated to be very successful in stabilizing the electric field integral equation (EFIE) for perfect electric conductors at lower frequencies. Previous authors have shown that, by using a dense matrix preconditioner based on the Calderon identities, t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2010-04, Vol.58 (4), p.1236-1250 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1250 |
---|---|
container_issue | 4 |
container_start_page | 1236 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 58 |
creator | Peeters, J. Cools, K. Bogaert, I. Olyslager, F. De Zutter, D. |
description | Calderon preconditioners have recently been demonstrated to be very successful in stabilizing the electric field integral equation (EFIE) for perfect electric conductors at lower frequencies. Previous authors have shown that, by using a dense matrix preconditioner based on the Calderon identities, the low frequency instability is removed while still maintaining the inherent accuracy of the EFIE. It was also demonstrated that the spectral properties of the Caldero-n preconditioner are conserved during discretization if the EFIE operator is discretized with Rao-Wilton-Glisson expansion functions and the preconditioner with Buffa-Christiansen expansion functions. In this article we will show how the Calderon multiplicative preconditioner (CMP) can be combined with fast multipole methods to accelerate the numerical solution, leading to an overall complexity of O ( N log N ) for the entire iterative solution. At low frequencies, where the CMP is most useful, the traditional multilevel fast multipole algorithm (MLFMA) is unstable and we apply the nondirectional stable plane wave MLFMA (NSPWMLFMA) that resolves the low frequency breakdown of the MLFMA. The combined algorithm will be called the CMP-NSPWMLFMA. Applying the CMP-NSPWMLFMA at open surfaces or very low frequencies leads to certain problems, which will be discussed in this article. |
doi_str_mv | 10.1109/TAP.2010.2041145 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_22729010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5395674</ieee_id><sourcerecordid>2716641411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-a76dec1c7feab0b49c46b36dea162471938c06fd1b977b22a3797a53a9b102c13</originalsourceid><addsrcrecordid>eNpdkM1KxDAURoMoOP7sBTcFEdxUc5M0aZbD4KgwogsFcVPS9FYjmXZMOoLP5SP4YkamuHB1uTfn-wiHkCOg5wBUXzxM788ZTRujAkAUW2QCRVHmjDHYJhNKocw1k0-7ZC_Gt7SKUogJeb5c1tg0rnvJZsY3GL6_uux27Qe38s6awX1gdh_Q9l3jBtd3GGLmRsLjB_psbuIwJnqP2dS_9MENr8t4QHZa4yMejnOfPM4vH2bX-eLu6mY2XeSWMznkRskGLVjVoqlpLbQVsubpZkAyoUDz0lLZNlBrpWrGDFdamYIbXQNlFvg-Odv0rkL_vsY4VEsXLXpvOuzXsQKpIFkoJU3oyT_0rV-HLv2uSl0KJC9kkSi6oWzoYwzYVqvgliZ8Jqj6lV0l2dWv7GqUnSKnY7GJ1vg2mM66-JdjTDGd-MQdbziHiH_PBdeFVIL_ALXaiIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027163565</pqid></control><display><type>article</type><title>Embedding Calderón Multiplicative Preconditioners in Multilevel Fast Multipole Algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Peeters, J. ; Cools, K. ; Bogaert, I. ; Olyslager, F. ; De Zutter, D.</creator><creatorcontrib>Peeters, J. ; Cools, K. ; Bogaert, I. ; Olyslager, F. ; De Zutter, D.</creatorcontrib><description>Calderon preconditioners have recently been demonstrated to be very successful in stabilizing the electric field integral equation (EFIE) for perfect electric conductors at lower frequencies. Previous authors have shown that, by using a dense matrix preconditioner based on the Calderon identities, the low frequency instability is removed while still maintaining the inherent accuracy of the EFIE. It was also demonstrated that the spectral properties of the Caldero-n preconditioner are conserved during discretization if the EFIE operator is discretized with Rao-Wilton-Glisson expansion functions and the preconditioner with Buffa-Christiansen expansion functions. In this article we will show how the Calderon multiplicative preconditioner (CMP) can be combined with fast multipole methods to accelerate the numerical solution, leading to an overall complexity of O ( N log N ) for the entire iterative solution. At low frequencies, where the CMP is most useful, the traditional multilevel fast multipole algorithm (MLFMA) is unstable and we apply the nondirectional stable plane wave MLFMA (NSPWMLFMA) that resolves the low frequency breakdown of the MLFMA. The combined algorithm will be called the CMP-NSPWMLFMA. Applying the CMP-NSPWMLFMA at open surfaces or very low frequencies leads to certain problems, which will be discussed in this article.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2010.2041145</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Algorithms ; Applied classical electromagnetism ; Applied sciences ; Chemical-mechanical polishing ; Conductors ; Diffraction, scattering, reflection ; Electric breakdown ; Electromagnetic scattering ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; fast solvers ; Frequency ; Fundamental areas of phenomenology (including applications) ; Information technology ; Integral equations ; Iterative methods ; Low frequencies ; Mathematical analysis ; Mathematical models ; MLFMA ; Multilevel ; Multipoles ; numerical stability ; Physics ; Plane waves ; Radiocommunications ; Radiowave propagation ; Resonance ; Scattering ; Telecommunications ; Telecommunications and information theory</subject><ispartof>IEEE transactions on antennas and propagation, 2010-04, Vol.58 (4), p.1236-1250</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-a76dec1c7feab0b49c46b36dea162471938c06fd1b977b22a3797a53a9b102c13</citedby><cites>FETCH-LOGICAL-c326t-a76dec1c7feab0b49c46b36dea162471938c06fd1b977b22a3797a53a9b102c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5395674$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5395674$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22729010$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peeters, J.</creatorcontrib><creatorcontrib>Cools, K.</creatorcontrib><creatorcontrib>Bogaert, I.</creatorcontrib><creatorcontrib>Olyslager, F.</creatorcontrib><creatorcontrib>De Zutter, D.</creatorcontrib><title>Embedding Calderón Multiplicative Preconditioners in Multilevel Fast Multipole Algorithms</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Calderon preconditioners have recently been demonstrated to be very successful in stabilizing the electric field integral equation (EFIE) for perfect electric conductors at lower frequencies. Previous authors have shown that, by using a dense matrix preconditioner based on the Calderon identities, the low frequency instability is removed while still maintaining the inherent accuracy of the EFIE. It was also demonstrated that the spectral properties of the Caldero-n preconditioner are conserved during discretization if the EFIE operator is discretized with Rao-Wilton-Glisson expansion functions and the preconditioner with Buffa-Christiansen expansion functions. In this article we will show how the Calderon multiplicative preconditioner (CMP) can be combined with fast multipole methods to accelerate the numerical solution, leading to an overall complexity of O ( N log N ) for the entire iterative solution. At low frequencies, where the CMP is most useful, the traditional multilevel fast multipole algorithm (MLFMA) is unstable and we apply the nondirectional stable plane wave MLFMA (NSPWMLFMA) that resolves the low frequency breakdown of the MLFMA. The combined algorithm will be called the CMP-NSPWMLFMA. Applying the CMP-NSPWMLFMA at open surfaces or very low frequencies leads to certain problems, which will be discussed in this article.</description><subject>Acceleration</subject><subject>Algorithms</subject><subject>Applied classical electromagnetism</subject><subject>Applied sciences</subject><subject>Chemical-mechanical polishing</subject><subject>Conductors</subject><subject>Diffraction, scattering, reflection</subject><subject>Electric breakdown</subject><subject>Electromagnetic scattering</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>fast solvers</subject><subject>Frequency</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Information technology</subject><subject>Integral equations</subject><subject>Iterative methods</subject><subject>Low frequencies</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>MLFMA</subject><subject>Multilevel</subject><subject>Multipoles</subject><subject>numerical stability</subject><subject>Physics</subject><subject>Plane waves</subject><subject>Radiocommunications</subject><subject>Radiowave propagation</subject><subject>Resonance</subject><subject>Scattering</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1KxDAURoMoOP7sBTcFEdxUc5M0aZbD4KgwogsFcVPS9FYjmXZMOoLP5SP4YkamuHB1uTfn-wiHkCOg5wBUXzxM788ZTRujAkAUW2QCRVHmjDHYJhNKocw1k0-7ZC_Gt7SKUogJeb5c1tg0rnvJZsY3GL6_uux27Qe38s6awX1gdh_Q9l3jBtd3GGLmRsLjB_psbuIwJnqP2dS_9MENr8t4QHZa4yMejnOfPM4vH2bX-eLu6mY2XeSWMznkRskGLVjVoqlpLbQVsubpZkAyoUDz0lLZNlBrpWrGDFdamYIbXQNlFvg-Odv0rkL_vsY4VEsXLXpvOuzXsQKpIFkoJU3oyT_0rV-HLv2uSl0KJC9kkSi6oWzoYwzYVqvgliZ8Jqj6lV0l2dWv7GqUnSKnY7GJ1vg2mM66-JdjTDGd-MQdbziHiH_PBdeFVIL_ALXaiIw</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Peeters, J.</creator><creator>Cools, K.</creator><creator>Bogaert, I.</creator><creator>Olyslager, F.</creator><creator>De Zutter, D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100401</creationdate><title>Embedding Calderón Multiplicative Preconditioners in Multilevel Fast Multipole Algorithms</title><author>Peeters, J. ; Cools, K. ; Bogaert, I. ; Olyslager, F. ; De Zutter, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-a76dec1c7feab0b49c46b36dea162471938c06fd1b977b22a3797a53a9b102c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acceleration</topic><topic>Algorithms</topic><topic>Applied classical electromagnetism</topic><topic>Applied sciences</topic><topic>Chemical-mechanical polishing</topic><topic>Conductors</topic><topic>Diffraction, scattering, reflection</topic><topic>Electric breakdown</topic><topic>Electromagnetic scattering</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>fast solvers</topic><topic>Frequency</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Information technology</topic><topic>Integral equations</topic><topic>Iterative methods</topic><topic>Low frequencies</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>MLFMA</topic><topic>Multilevel</topic><topic>Multipoles</topic><topic>numerical stability</topic><topic>Physics</topic><topic>Plane waves</topic><topic>Radiocommunications</topic><topic>Radiowave propagation</topic><topic>Resonance</topic><topic>Scattering</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peeters, J.</creatorcontrib><creatorcontrib>Cools, K.</creatorcontrib><creatorcontrib>Bogaert, I.</creatorcontrib><creatorcontrib>Olyslager, F.</creatorcontrib><creatorcontrib>De Zutter, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peeters, J.</au><au>Cools, K.</au><au>Bogaert, I.</au><au>Olyslager, F.</au><au>De Zutter, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedding Calderón Multiplicative Preconditioners in Multilevel Fast Multipole Algorithms</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>58</volume><issue>4</issue><spage>1236</spage><epage>1250</epage><pages>1236-1250</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Calderon preconditioners have recently been demonstrated to be very successful in stabilizing the electric field integral equation (EFIE) for perfect electric conductors at lower frequencies. Previous authors have shown that, by using a dense matrix preconditioner based on the Calderon identities, the low frequency instability is removed while still maintaining the inherent accuracy of the EFIE. It was also demonstrated that the spectral properties of the Caldero-n preconditioner are conserved during discretization if the EFIE operator is discretized with Rao-Wilton-Glisson expansion functions and the preconditioner with Buffa-Christiansen expansion functions. In this article we will show how the Calderon multiplicative preconditioner (CMP) can be combined with fast multipole methods to accelerate the numerical solution, leading to an overall complexity of O ( N log N ) for the entire iterative solution. At low frequencies, where the CMP is most useful, the traditional multilevel fast multipole algorithm (MLFMA) is unstable and we apply the nondirectional stable plane wave MLFMA (NSPWMLFMA) that resolves the low frequency breakdown of the MLFMA. The combined algorithm will be called the CMP-NSPWMLFMA. Applying the CMP-NSPWMLFMA at open surfaces or very low frequencies leads to certain problems, which will be discussed in this article.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2010.2041145</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2010-04, Vol.58 (4), p.1236-1250 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_pascalfrancis_primary_22729010 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Algorithms Applied classical electromagnetism Applied sciences Chemical-mechanical polishing Conductors Diffraction, scattering, reflection Electric breakdown Electromagnetic scattering Electromagnetic wave propagation, radiowave propagation Electromagnetism electron and ion optics Exact sciences and technology fast solvers Frequency Fundamental areas of phenomenology (including applications) Information technology Integral equations Iterative methods Low frequencies Mathematical analysis Mathematical models MLFMA Multilevel Multipoles numerical stability Physics Plane waves Radiocommunications Radiowave propagation Resonance Scattering Telecommunications Telecommunications and information theory |
title | Embedding Calderón Multiplicative Preconditioners in Multilevel Fast Multipole Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A51%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedding%20Calder%C3%B3n%20Multiplicative%20Preconditioners%20in%20Multilevel%20Fast%20Multipole%20Algorithms&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Peeters,%20J.&rft.date=2010-04-01&rft.volume=58&rft.issue=4&rft.spage=1236&rft.epage=1250&rft.pages=1236-1250&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2010.2041145&rft_dat=%3Cproquest_RIE%3E2716641411%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027163565&rft_id=info:pmid/&rft_ieee_id=5395674&rfr_iscdi=true |