Effect of chemical substitution and pressure on YbRh2Si2

We carried out electrical resistivity experiments on (Yb,La)Rh2Si2 and on Yb(Rh,Ir)2Si2 under pressure and in magnetic fields. YbRh2Si2 exhibits a weak antiferromagnetic transition at atmospheric pressure with a Néel temperature of only $T_N \approx 70$ mK. By applying a small magnetic field TN can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. B. Basic research 2010-03, Vol.247 (3), p.727-730
Hauptverfasser: Nicklas, M., Macovei, M. E., Ferstl, J., Krellner, C., Geibel, C., Steglich, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 730
container_issue 3
container_start_page 727
container_title Physica status solidi. B. Basic research
container_volume 247
creator Nicklas, M.
Macovei, M. E.
Ferstl, J.
Krellner, C.
Geibel, C.
Steglich, F.
description We carried out electrical resistivity experiments on (Yb,La)Rh2Si2 and on Yb(Rh,Ir)2Si2 under pressure and in magnetic fields. YbRh2Si2 exhibits a weak antiferromagnetic transition at atmospheric pressure with a Néel temperature of only $T_N \approx 70$ mK. By applying a small magnetic field TN can be continuously suppressed to $T = 0$ at $B_c = 60$ mT ($B \bot c$) driving the system to a quantum critical point (QCP). On applying external pressure the magnetic phase is stabilized and TN (p) is increasing as usually observed in Yb‐based heavy‐fermion metals. Substituting Yb by La or Rh by Ir allows to create a negative chemical pressure, La (Ir) being smaller than Yb (Rh), and eventually to drive YbRh2Si2 to a pressure controlled QCP. In this paper we compare the effect of external hydrostatic pressure and chemical substitution on the ground‐state properties of YbRh2Si2.
doi_str_mv 10.1002/pssb.200983064
format Article
fullrecord <record><control><sourceid>wiley_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_22565983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSB200983064</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3134-7e6571ad1510e50fd98c880fca1176cf6a7743604a8d37bf1a1e296bdfdf58863</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqVw5ZwLx5RdO37kSEsJSOUhUoTgYjmJrRr6iOJU0H9PqqKcVqOdb7UzhFwijBCAXtchFCMKkCoGIjkiA-QUY5ZyPCYDYBJiTCU9JWchfAGARIYDoqbO2bKNNi4qF3blS7OMwrYIrW-3rd-sI7OuorqxIWwbG3X6o3hd0NzTc3LizDLYi_85JG930_nkPp49Zw-Tm1nsGbIkllZwiaZCjmA5uCpVpVLgSoMoRemEkTJhAhKjKiYLhwYtTUVRucpxpQQbkqvD3dqE7jnXmHXpg64bvzLNTlPKBe8Sd7704PvxS7vr9wh6X47el6P7cvRLno971bHxgfWhtb89a5pvLSSTXL8_ZXo-ZrPP_DHTt-wPJbxpLw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of chemical substitution and pressure on YbRh2Si2</title><source>Wiley Journals</source><creator>Nicklas, M. ; Macovei, M. E. ; Ferstl, J. ; Krellner, C. ; Geibel, C. ; Steglich, F.</creator><creatorcontrib>Nicklas, M. ; Macovei, M. E. ; Ferstl, J. ; Krellner, C. ; Geibel, C. ; Steglich, F.</creatorcontrib><description>We carried out electrical resistivity experiments on (Yb,La)Rh2Si2 and on Yb(Rh,Ir)2Si2 under pressure and in magnetic fields. YbRh2Si2 exhibits a weak antiferromagnetic transition at atmospheric pressure with a Néel temperature of only $T_N \approx 70$ mK. By applying a small magnetic field TN can be continuously suppressed to $T = 0$ at $B_c = 60$ mT ($B \bot c$) driving the system to a quantum critical point (QCP). On applying external pressure the magnetic phase is stabilized and TN (p) is increasing as usually observed in Yb‐based heavy‐fermion metals. Substituting Yb by La or Rh by Ir allows to create a negative chemical pressure, La (Ir) being smaller than Yb (Rh), and eventually to drive YbRh2Si2 to a pressure controlled QCP. In this paper we compare the effect of external hydrostatic pressure and chemical substitution on the ground‐state properties of YbRh2Si2.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.200983064</identifier><identifier>CODEN: PSSBBD</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>71.10.Hf ; 71.27.+a ; 74.62.Fj ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electronic conduction in metals and alloys ; Electronic transport in condensed matter ; Exact sciences and technology ; Magnetic properties and materials ; Magnetically ordered materials: other intrinsic properties ; Physics ; Scattering mechanisms and kondo effect ; Valence fluctuation, kondo lattice, and heavy-fermion phenomena</subject><ispartof>Physica status solidi. B. Basic research, 2010-03, Vol.247 (3), p.727-730</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.200983064$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.200983064$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,1417,23930,23931,25140,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22565983$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nicklas, M.</creatorcontrib><creatorcontrib>Macovei, M. E.</creatorcontrib><creatorcontrib>Ferstl, J.</creatorcontrib><creatorcontrib>Krellner, C.</creatorcontrib><creatorcontrib>Geibel, C.</creatorcontrib><creatorcontrib>Steglich, F.</creatorcontrib><title>Effect of chemical substitution and pressure on YbRh2Si2</title><title>Physica status solidi. B. Basic research</title><addtitle>phys. stat. sol. (b)</addtitle><description>We carried out electrical resistivity experiments on (Yb,La)Rh2Si2 and on Yb(Rh,Ir)2Si2 under pressure and in magnetic fields. YbRh2Si2 exhibits a weak antiferromagnetic transition at atmospheric pressure with a Néel temperature of only $T_N \approx 70$ mK. By applying a small magnetic field TN can be continuously suppressed to $T = 0$ at $B_c = 60$ mT ($B \bot c$) driving the system to a quantum critical point (QCP). On applying external pressure the magnetic phase is stabilized and TN (p) is increasing as usually observed in Yb‐based heavy‐fermion metals. Substituting Yb by La or Rh by Ir allows to create a negative chemical pressure, La (Ir) being smaller than Yb (Rh), and eventually to drive YbRh2Si2 to a pressure controlled QCP. In this paper we compare the effect of external hydrostatic pressure and chemical substitution on the ground‐state properties of YbRh2Si2.</description><subject>71.10.Hf</subject><subject>71.27.+a</subject><subject>74.62.Fj</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electronic conduction in metals and alloys</subject><subject>Electronic transport in condensed matter</subject><subject>Exact sciences and technology</subject><subject>Magnetic properties and materials</subject><subject>Magnetically ordered materials: other intrinsic properties</subject><subject>Physics</subject><subject>Scattering mechanisms and kondo effect</subject><subject>Valence fluctuation, kondo lattice, and heavy-fermion phenomena</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EEqVw5ZwLx5RdO37kSEsJSOUhUoTgYjmJrRr6iOJU0H9PqqKcVqOdb7UzhFwijBCAXtchFCMKkCoGIjkiA-QUY5ZyPCYDYBJiTCU9JWchfAGARIYDoqbO2bKNNi4qF3blS7OMwrYIrW-3rd-sI7OuorqxIWwbG3X6o3hd0NzTc3LizDLYi_85JG930_nkPp49Zw-Tm1nsGbIkllZwiaZCjmA5uCpVpVLgSoMoRemEkTJhAhKjKiYLhwYtTUVRucpxpQQbkqvD3dqE7jnXmHXpg64bvzLNTlPKBe8Sd7704PvxS7vr9wh6X47el6P7cvRLno971bHxgfWhtb89a5pvLSSTXL8_ZXo-ZrPP_DHTt-wPJbxpLw</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Nicklas, M.</creator><creator>Macovei, M. E.</creator><creator>Ferstl, J.</creator><creator>Krellner, C.</creator><creator>Geibel, C.</creator><creator>Steglich, F.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope></search><sort><creationdate>201003</creationdate><title>Effect of chemical substitution and pressure on YbRh2Si2</title><author>Nicklas, M. ; Macovei, M. E. ; Ferstl, J. ; Krellner, C. ; Geibel, C. ; Steglich, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3134-7e6571ad1510e50fd98c880fca1176cf6a7743604a8d37bf1a1e296bdfdf58863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>71.10.Hf</topic><topic>71.27.+a</topic><topic>74.62.Fj</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electronic conduction in metals and alloys</topic><topic>Electronic transport in condensed matter</topic><topic>Exact sciences and technology</topic><topic>Magnetic properties and materials</topic><topic>Magnetically ordered materials: other intrinsic properties</topic><topic>Physics</topic><topic>Scattering mechanisms and kondo effect</topic><topic>Valence fluctuation, kondo lattice, and heavy-fermion phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicklas, M.</creatorcontrib><creatorcontrib>Macovei, M. E.</creatorcontrib><creatorcontrib>Ferstl, J.</creatorcontrib><creatorcontrib>Krellner, C.</creatorcontrib><creatorcontrib>Geibel, C.</creatorcontrib><creatorcontrib>Steglich, F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><jtitle>Physica status solidi. B. Basic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicklas, M.</au><au>Macovei, M. E.</au><au>Ferstl, J.</au><au>Krellner, C.</au><au>Geibel, C.</au><au>Steglich, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of chemical substitution and pressure on YbRh2Si2</atitle><jtitle>Physica status solidi. B. Basic research</jtitle><addtitle>phys. stat. sol. (b)</addtitle><date>2010-03</date><risdate>2010</risdate><volume>247</volume><issue>3</issue><spage>727</spage><epage>730</epage><pages>727-730</pages><issn>0370-1972</issn><eissn>1521-3951</eissn><coden>PSSBBD</coden><abstract>We carried out electrical resistivity experiments on (Yb,La)Rh2Si2 and on Yb(Rh,Ir)2Si2 under pressure and in magnetic fields. YbRh2Si2 exhibits a weak antiferromagnetic transition at atmospheric pressure with a Néel temperature of only $T_N \approx 70$ mK. By applying a small magnetic field TN can be continuously suppressed to $T = 0$ at $B_c = 60$ mT ($B \bot c$) driving the system to a quantum critical point (QCP). On applying external pressure the magnetic phase is stabilized and TN (p) is increasing as usually observed in Yb‐based heavy‐fermion metals. Substituting Yb by La or Rh by Ir allows to create a negative chemical pressure, La (Ir) being smaller than Yb (Rh), and eventually to drive YbRh2Si2 to a pressure controlled QCP. In this paper we compare the effect of external hydrostatic pressure and chemical substitution on the ground‐state properties of YbRh2Si2.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssb.200983064</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof Physica status solidi. B. Basic research, 2010-03, Vol.247 (3), p.727-730
issn 0370-1972
1521-3951
language eng
recordid cdi_pascalfrancis_primary_22565983
source Wiley Journals
subjects 71.10.Hf
71.27.+a
74.62.Fj
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electronic conduction in metals and alloys
Electronic transport in condensed matter
Exact sciences and technology
Magnetic properties and materials
Magnetically ordered materials: other intrinsic properties
Physics
Scattering mechanisms and kondo effect
Valence fluctuation, kondo lattice, and heavy-fermion phenomena
title Effect of chemical substitution and pressure on YbRh2Si2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20chemical%20substitution%20and%20pressure%20on%20YbRh2Si2&rft.jtitle=Physica%20status%20solidi.%20B.%20Basic%20research&rft.au=Nicklas,%20M.&rft.date=2010-03&rft.volume=247&rft.issue=3&rft.spage=727&rft.epage=730&rft.pages=727-730&rft.issn=0370-1972&rft.eissn=1521-3951&rft.coden=PSSBBD&rft_id=info:doi/10.1002/pssb.200983064&rft_dat=%3Cwiley_pasca%3EPSSB200983064%3C/wiley_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true