Effect of chemical substitution and pressure on YbRh2Si2
We carried out electrical resistivity experiments on (Yb,La)Rh2Si2 and on Yb(Rh,Ir)2Si2 under pressure and in magnetic fields. YbRh2Si2 exhibits a weak antiferromagnetic transition at atmospheric pressure with a Néel temperature of only $T_N \approx 70$ mK. By applying a small magnetic field TN can...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. B. Basic research 2010-03, Vol.247 (3), p.727-730 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 730 |
---|---|
container_issue | 3 |
container_start_page | 727 |
container_title | Physica status solidi. B. Basic research |
container_volume | 247 |
creator | Nicklas, M. Macovei, M. E. Ferstl, J. Krellner, C. Geibel, C. Steglich, F. |
description | We carried out electrical resistivity experiments on (Yb,La)Rh2Si2 and on Yb(Rh,Ir)2Si2 under pressure and in magnetic fields. YbRh2Si2 exhibits a weak antiferromagnetic transition at atmospheric pressure with a Néel temperature of only $T_N \approx 70$ mK. By applying a small magnetic field TN can be continuously suppressed to $T = 0$ at $B_c = 60$ mT ($B \bot c$) driving the system to a quantum critical point (QCP). On applying external pressure the magnetic phase is stabilized and TN (p) is increasing as usually observed in Yb‐based heavy‐fermion metals. Substituting Yb by La or Rh by Ir allows to create a negative chemical pressure, La (Ir) being smaller than Yb (Rh), and eventually to drive YbRh2Si2 to a pressure controlled QCP. In this paper we compare the effect of external hydrostatic pressure and chemical substitution on the ground‐state properties of YbRh2Si2. |
doi_str_mv | 10.1002/pssb.200983064 |
format | Article |
fullrecord | <record><control><sourceid>wiley_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_22565983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PSSB200983064</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3134-7e6571ad1510e50fd98c880fca1176cf6a7743604a8d37bf1a1e296bdfdf58863</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqVw5ZwLx5RdO37kSEsJSOUhUoTgYjmJrRr6iOJU0H9PqqKcVqOdb7UzhFwijBCAXtchFCMKkCoGIjkiA-QUY5ZyPCYDYBJiTCU9JWchfAGARIYDoqbO2bKNNi4qF3blS7OMwrYIrW-3rd-sI7OuorqxIWwbG3X6o3hd0NzTc3LizDLYi_85JG930_nkPp49Zw-Tm1nsGbIkllZwiaZCjmA5uCpVpVLgSoMoRemEkTJhAhKjKiYLhwYtTUVRucpxpQQbkqvD3dqE7jnXmHXpg64bvzLNTlPKBe8Sd7704PvxS7vr9wh6X47el6P7cvRLno971bHxgfWhtb89a5pvLSSTXL8_ZXo-ZrPP_DHTt-wPJbxpLw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of chemical substitution and pressure on YbRh2Si2</title><source>Wiley Journals</source><creator>Nicklas, M. ; Macovei, M. E. ; Ferstl, J. ; Krellner, C. ; Geibel, C. ; Steglich, F.</creator><creatorcontrib>Nicklas, M. ; Macovei, M. E. ; Ferstl, J. ; Krellner, C. ; Geibel, C. ; Steglich, F.</creatorcontrib><description>We carried out electrical resistivity experiments on (Yb,La)Rh2Si2 and on Yb(Rh,Ir)2Si2 under pressure and in magnetic fields. YbRh2Si2 exhibits a weak antiferromagnetic transition at atmospheric pressure with a Néel temperature of only $T_N \approx 70$ mK. By applying a small magnetic field TN can be continuously suppressed to $T = 0$ at $B_c = 60$ mT ($B \bot c$) driving the system to a quantum critical point (QCP). On applying external pressure the magnetic phase is stabilized and TN (p) is increasing as usually observed in Yb‐based heavy‐fermion metals. Substituting Yb by La or Rh by Ir allows to create a negative chemical pressure, La (Ir) being smaller than Yb (Rh), and eventually to drive YbRh2Si2 to a pressure controlled QCP. In this paper we compare the effect of external hydrostatic pressure and chemical substitution on the ground‐state properties of YbRh2Si2.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.200983064</identifier><identifier>CODEN: PSSBBD</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>71.10.Hf ; 71.27.+a ; 74.62.Fj ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electronic conduction in metals and alloys ; Electronic transport in condensed matter ; Exact sciences and technology ; Magnetic properties and materials ; Magnetically ordered materials: other intrinsic properties ; Physics ; Scattering mechanisms and kondo effect ; Valence fluctuation, kondo lattice, and heavy-fermion phenomena</subject><ispartof>Physica status solidi. B. Basic research, 2010-03, Vol.247 (3), p.727-730</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.200983064$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.200983064$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,1417,23930,23931,25140,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22565983$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nicklas, M.</creatorcontrib><creatorcontrib>Macovei, M. E.</creatorcontrib><creatorcontrib>Ferstl, J.</creatorcontrib><creatorcontrib>Krellner, C.</creatorcontrib><creatorcontrib>Geibel, C.</creatorcontrib><creatorcontrib>Steglich, F.</creatorcontrib><title>Effect of chemical substitution and pressure on YbRh2Si2</title><title>Physica status solidi. B. Basic research</title><addtitle>phys. stat. sol. (b)</addtitle><description>We carried out electrical resistivity experiments on (Yb,La)Rh2Si2 and on Yb(Rh,Ir)2Si2 under pressure and in magnetic fields. YbRh2Si2 exhibits a weak antiferromagnetic transition at atmospheric pressure with a Néel temperature of only $T_N \approx 70$ mK. By applying a small magnetic field TN can be continuously suppressed to $T = 0$ at $B_c = 60$ mT ($B \bot c$) driving the system to a quantum critical point (QCP). On applying external pressure the magnetic phase is stabilized and TN (p) is increasing as usually observed in Yb‐based heavy‐fermion metals. Substituting Yb by La or Rh by Ir allows to create a negative chemical pressure, La (Ir) being smaller than Yb (Rh), and eventually to drive YbRh2Si2 to a pressure controlled QCP. In this paper we compare the effect of external hydrostatic pressure and chemical substitution on the ground‐state properties of YbRh2Si2.</description><subject>71.10.Hf</subject><subject>71.27.+a</subject><subject>74.62.Fj</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electronic conduction in metals and alloys</subject><subject>Electronic transport in condensed matter</subject><subject>Exact sciences and technology</subject><subject>Magnetic properties and materials</subject><subject>Magnetically ordered materials: other intrinsic properties</subject><subject>Physics</subject><subject>Scattering mechanisms and kondo effect</subject><subject>Valence fluctuation, kondo lattice, and heavy-fermion phenomena</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EEqVw5ZwLx5RdO37kSEsJSOUhUoTgYjmJrRr6iOJU0H9PqqKcVqOdb7UzhFwijBCAXtchFCMKkCoGIjkiA-QUY5ZyPCYDYBJiTCU9JWchfAGARIYDoqbO2bKNNi4qF3blS7OMwrYIrW-3rd-sI7OuorqxIWwbG3X6o3hd0NzTc3LizDLYi_85JG930_nkPp49Zw-Tm1nsGbIkllZwiaZCjmA5uCpVpVLgSoMoRemEkTJhAhKjKiYLhwYtTUVRucpxpQQbkqvD3dqE7jnXmHXpg64bvzLNTlPKBe8Sd7704PvxS7vr9wh6X47el6P7cvRLno971bHxgfWhtb89a5pvLSSTXL8_ZXo-ZrPP_DHTt-wPJbxpLw</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Nicklas, M.</creator><creator>Macovei, M. E.</creator><creator>Ferstl, J.</creator><creator>Krellner, C.</creator><creator>Geibel, C.</creator><creator>Steglich, F.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope></search><sort><creationdate>201003</creationdate><title>Effect of chemical substitution and pressure on YbRh2Si2</title><author>Nicklas, M. ; Macovei, M. E. ; Ferstl, J. ; Krellner, C. ; Geibel, C. ; Steglich, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3134-7e6571ad1510e50fd98c880fca1176cf6a7743604a8d37bf1a1e296bdfdf58863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>71.10.Hf</topic><topic>71.27.+a</topic><topic>74.62.Fj</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electronic conduction in metals and alloys</topic><topic>Electronic transport in condensed matter</topic><topic>Exact sciences and technology</topic><topic>Magnetic properties and materials</topic><topic>Magnetically ordered materials: other intrinsic properties</topic><topic>Physics</topic><topic>Scattering mechanisms and kondo effect</topic><topic>Valence fluctuation, kondo lattice, and heavy-fermion phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicklas, M.</creatorcontrib><creatorcontrib>Macovei, M. E.</creatorcontrib><creatorcontrib>Ferstl, J.</creatorcontrib><creatorcontrib>Krellner, C.</creatorcontrib><creatorcontrib>Geibel, C.</creatorcontrib><creatorcontrib>Steglich, F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><jtitle>Physica status solidi. B. Basic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicklas, M.</au><au>Macovei, M. E.</au><au>Ferstl, J.</au><au>Krellner, C.</au><au>Geibel, C.</au><au>Steglich, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of chemical substitution and pressure on YbRh2Si2</atitle><jtitle>Physica status solidi. B. Basic research</jtitle><addtitle>phys. stat. sol. (b)</addtitle><date>2010-03</date><risdate>2010</risdate><volume>247</volume><issue>3</issue><spage>727</spage><epage>730</epage><pages>727-730</pages><issn>0370-1972</issn><eissn>1521-3951</eissn><coden>PSSBBD</coden><abstract>We carried out electrical resistivity experiments on (Yb,La)Rh2Si2 and on Yb(Rh,Ir)2Si2 under pressure and in magnetic fields. YbRh2Si2 exhibits a weak antiferromagnetic transition at atmospheric pressure with a Néel temperature of only $T_N \approx 70$ mK. By applying a small magnetic field TN can be continuously suppressed to $T = 0$ at $B_c = 60$ mT ($B \bot c$) driving the system to a quantum critical point (QCP). On applying external pressure the magnetic phase is stabilized and TN (p) is increasing as usually observed in Yb‐based heavy‐fermion metals. Substituting Yb by La or Rh by Ir allows to create a negative chemical pressure, La (Ir) being smaller than Yb (Rh), and eventually to drive YbRh2Si2 to a pressure controlled QCP. In this paper we compare the effect of external hydrostatic pressure and chemical substitution on the ground‐state properties of YbRh2Si2.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssb.200983064</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-1972 |
ispartof | Physica status solidi. B. Basic research, 2010-03, Vol.247 (3), p.727-730 |
issn | 0370-1972 1521-3951 |
language | eng |
recordid | cdi_pascalfrancis_primary_22565983 |
source | Wiley Journals |
subjects | 71.10.Hf 71.27.+a 74.62.Fj Condensed matter: electronic structure, electrical, magnetic, and optical properties Electronic conduction in metals and alloys Electronic transport in condensed matter Exact sciences and technology Magnetic properties and materials Magnetically ordered materials: other intrinsic properties Physics Scattering mechanisms and kondo effect Valence fluctuation, kondo lattice, and heavy-fermion phenomena |
title | Effect of chemical substitution and pressure on YbRh2Si2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20chemical%20substitution%20and%20pressure%20on%20YbRh2Si2&rft.jtitle=Physica%20status%20solidi.%20B.%20Basic%20research&rft.au=Nicklas,%20M.&rft.date=2010-03&rft.volume=247&rft.issue=3&rft.spage=727&rft.epage=730&rft.pages=727-730&rft.issn=0370-1972&rft.eissn=1521-3951&rft.coden=PSSBBD&rft_id=info:doi/10.1002/pssb.200983064&rft_dat=%3Cwiley_pasca%3EPSSB200983064%3C/wiley_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |