Finite Difference Lattice Boltzmann Method Applied to Acoustic-Scattering Problems

This paper reports on an attempt to simulate acoustic waves scattering using a finite-difference lattice Boltzmann method based on an alternative lattice equilibrium particle distribution function constructed for compressible thermal fluids. The studies focus on acoustics scattering by a zero-circul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2010-02, Vol.48 (2), p.354-371
Hauptverfasser: Kam, E. W. S, So, R. M. C, Fu, S. C, Leung, R. C. K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 371
container_issue 2
container_start_page 354
container_title AIAA journal
container_volume 48
creator Kam, E. W. S
So, R. M. C
Fu, S. C
Leung, R. C. K
description This paper reports on an attempt to simulate acoustic waves scattering using a finite-difference lattice Boltzmann method based on an alternative lattice equilibrium particle distribution function constructed for compressible thermal fluids. The studies focus on acoustics scattering by a zero-circulation vortex and by an isolated thermal source with no heat gain/loss. Two limiting cases of each type of scattering are examined; one is the case of an incoming acoustic wave with a short wavelength, and the other has a relatively long wavelength compared with the characteristic dimension of the obstacle. These scattering problems have been treated previously using a conventional lattice Boltzmann method and a gas-kinetic scheme. The results showed that these methods were only able to simulate the short wavelength limit case with fair accuracy for the two types of acoustics scattering considered. Because the present approach is able to recover the compressible Navier - Stokes equations with correct fluid properties, the finite-difference solution of the proposed alternative modeled lattice Boltzmann equation allows the limiting cases of the acoustics scattering problems to be calculated without numerical instability. The results thus obtained are in agreement either with analysis or with results obtained from direct aeroacoustics simulations employing the compressible Navier - Stokes equations. [PUBLICATION ABSTRACT]
doi_str_mv 10.2514/1.43753
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_22379711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743199942</sourcerecordid><originalsourceid>FETCH-LOGICAL-a377t-4c05975a945fbc06d9ce992a3f10a463b95eb86a2bff2e8a902fdfedd7d392663</originalsourceid><addsrcrecordid>eNpt0F1LHDEUBuBQKrha8S8MUpFejOZjMtlcbrW2wkqLH9C7cCZzYiPZmWmShdZf36iLgvTqcODhPYeXkH1Gj7lkzQk7boSS4h2ZMSlELeby53syo5SymjWSb5OdlO7LxtWczcjVuR98xurMO4cRB4vVEnL2ZX4eQ35YwTBUl5h_jX21mKbgsa_yWC3suE5F1de2aIx-uKt-xLELuEofyJaDkHBvM3fJ7fmXm9Nv9fL714vTxbIGoVSuG0ulVhJ0I11nadtri1pzEI5RaFrRaYndvAXeOcdxDppy1zvse9ULzdtW7JKj59wpjr_XmLJZ-WQxBBiwfGdUI5jWuuFFHryR9-M6DuU5w0tJXBb5GmfjmFJEZ6boVxD_GkbNY7OGmadmizzcxEGyEFyEwfr0wjkXSiv2mPjp2YEHeD25iTFT74xbh5DxTy7243_tm9P_AGdLkQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215325431</pqid></control><display><type>article</type><title>Finite Difference Lattice Boltzmann Method Applied to Acoustic-Scattering Problems</title><source>Alma/SFX Local Collection</source><creator>Kam, E. W. S ; So, R. M. C ; Fu, S. C ; Leung, R. C. K</creator><creatorcontrib>Kam, E. W. S ; So, R. M. C ; Fu, S. C ; Leung, R. C. K</creatorcontrib><description>This paper reports on an attempt to simulate acoustic waves scattering using a finite-difference lattice Boltzmann method based on an alternative lattice equilibrium particle distribution function constructed for compressible thermal fluids. The studies focus on acoustics scattering by a zero-circulation vortex and by an isolated thermal source with no heat gain/loss. Two limiting cases of each type of scattering are examined; one is the case of an incoming acoustic wave with a short wavelength, and the other has a relatively long wavelength compared with the characteristic dimension of the obstacle. These scattering problems have been treated previously using a conventional lattice Boltzmann method and a gas-kinetic scheme. The results showed that these methods were only able to simulate the short wavelength limit case with fair accuracy for the two types of acoustics scattering considered. Because the present approach is able to recover the compressible Navier - Stokes equations with correct fluid properties, the finite-difference solution of the proposed alternative modeled lattice Boltzmann equation allows the limiting cases of the acoustics scattering problems to be calculated without numerical instability. The results thus obtained are in agreement either with analysis or with results obtained from direct aeroacoustics simulations employing the compressible Navier - Stokes equations. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.43753</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Acoustics ; Aeroacoustics, atmospheric sound ; Aerodynamics ; Aircraft ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Lattice theory ; Physics ; Simulation</subject><ispartof>AIAA journal, 2010-02, Vol.48 (2), p.354-371</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Feb 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a377t-4c05975a945fbc06d9ce992a3f10a463b95eb86a2bff2e8a902fdfedd7d392663</citedby><cites>FETCH-LOGICAL-a377t-4c05975a945fbc06d9ce992a3f10a463b95eb86a2bff2e8a902fdfedd7d392663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22379711$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kam, E. W. S</creatorcontrib><creatorcontrib>So, R. M. C</creatorcontrib><creatorcontrib>Fu, S. C</creatorcontrib><creatorcontrib>Leung, R. C. K</creatorcontrib><title>Finite Difference Lattice Boltzmann Method Applied to Acoustic-Scattering Problems</title><title>AIAA journal</title><description>This paper reports on an attempt to simulate acoustic waves scattering using a finite-difference lattice Boltzmann method based on an alternative lattice equilibrium particle distribution function constructed for compressible thermal fluids. The studies focus on acoustics scattering by a zero-circulation vortex and by an isolated thermal source with no heat gain/loss. Two limiting cases of each type of scattering are examined; one is the case of an incoming acoustic wave with a short wavelength, and the other has a relatively long wavelength compared with the characteristic dimension of the obstacle. These scattering problems have been treated previously using a conventional lattice Boltzmann method and a gas-kinetic scheme. The results showed that these methods were only able to simulate the short wavelength limit case with fair accuracy for the two types of acoustics scattering considered. Because the present approach is able to recover the compressible Navier - Stokes equations with correct fluid properties, the finite-difference solution of the proposed alternative modeled lattice Boltzmann equation allows the limiting cases of the acoustics scattering problems to be calculated without numerical instability. The results thus obtained are in agreement either with analysis or with results obtained from direct aeroacoustics simulations employing the compressible Navier - Stokes equations. [PUBLICATION ABSTRACT]</description><subject>Acoustics</subject><subject>Aeroacoustics, atmospheric sound</subject><subject>Aerodynamics</subject><subject>Aircraft</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lattice theory</subject><subject>Physics</subject><subject>Simulation</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpt0F1LHDEUBuBQKrha8S8MUpFejOZjMtlcbrW2wkqLH9C7cCZzYiPZmWmShdZf36iLgvTqcODhPYeXkH1Gj7lkzQk7boSS4h2ZMSlELeby53syo5SymjWSb5OdlO7LxtWczcjVuR98xurMO4cRB4vVEnL2ZX4eQ35YwTBUl5h_jX21mKbgsa_yWC3suE5F1de2aIx-uKt-xLELuEofyJaDkHBvM3fJ7fmXm9Nv9fL714vTxbIGoVSuG0ulVhJ0I11nadtri1pzEI5RaFrRaYndvAXeOcdxDppy1zvse9ULzdtW7JKj59wpjr_XmLJZ-WQxBBiwfGdUI5jWuuFFHryR9-M6DuU5w0tJXBb5GmfjmFJEZ6boVxD_GkbNY7OGmadmizzcxEGyEFyEwfr0wjkXSiv2mPjp2YEHeD25iTFT74xbh5DxTy7243_tm9P_AGdLkQ0</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Kam, E. W. S</creator><creator>So, R. M. C</creator><creator>Fu, S. C</creator><creator>Leung, R. C. K</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20100201</creationdate><title>Finite Difference Lattice Boltzmann Method Applied to Acoustic-Scattering Problems</title><author>Kam, E. W. S ; So, R. M. C ; Fu, S. C ; Leung, R. C. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a377t-4c05975a945fbc06d9ce992a3f10a463b95eb86a2bff2e8a902fdfedd7d392663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acoustics</topic><topic>Aeroacoustics, atmospheric sound</topic><topic>Aerodynamics</topic><topic>Aircraft</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lattice theory</topic><topic>Physics</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kam, E. W. S</creatorcontrib><creatorcontrib>So, R. M. C</creatorcontrib><creatorcontrib>Fu, S. C</creatorcontrib><creatorcontrib>Leung, R. C. K</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kam, E. W. S</au><au>So, R. M. C</au><au>Fu, S. C</au><au>Leung, R. C. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite Difference Lattice Boltzmann Method Applied to Acoustic-Scattering Problems</atitle><jtitle>AIAA journal</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>48</volume><issue>2</issue><spage>354</spage><epage>371</epage><pages>354-371</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>This paper reports on an attempt to simulate acoustic waves scattering using a finite-difference lattice Boltzmann method based on an alternative lattice equilibrium particle distribution function constructed for compressible thermal fluids. The studies focus on acoustics scattering by a zero-circulation vortex and by an isolated thermal source with no heat gain/loss. Two limiting cases of each type of scattering are examined; one is the case of an incoming acoustic wave with a short wavelength, and the other has a relatively long wavelength compared with the characteristic dimension of the obstacle. These scattering problems have been treated previously using a conventional lattice Boltzmann method and a gas-kinetic scheme. The results showed that these methods were only able to simulate the short wavelength limit case with fair accuracy for the two types of acoustics scattering considered. Because the present approach is able to recover the compressible Navier - Stokes equations with correct fluid properties, the finite-difference solution of the proposed alternative modeled lattice Boltzmann equation allows the limiting cases of the acoustics scattering problems to be calculated without numerical instability. The results thus obtained are in agreement either with analysis or with results obtained from direct aeroacoustics simulations employing the compressible Navier - Stokes equations. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.43753</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2010-02, Vol.48 (2), p.354-371
issn 0001-1452
1533-385X
language eng
recordid cdi_pascalfrancis_primary_22379711
source Alma/SFX Local Collection
subjects Acoustics
Aeroacoustics, atmospheric sound
Aerodynamics
Aircraft
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Lattice theory
Physics
Simulation
title Finite Difference Lattice Boltzmann Method Applied to Acoustic-Scattering Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20Difference%20Lattice%20Boltzmann%20Method%20Applied%20to%20Acoustic-Scattering%20Problems&rft.jtitle=AIAA%20journal&rft.au=Kam,%20E.%20W.%20S&rft.date=2010-02-01&rft.volume=48&rft.issue=2&rft.spage=354&rft.epage=371&rft.pages=354-371&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/1.43753&rft_dat=%3Cproquest_pasca%3E743199942%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215325431&rft_id=info:pmid/&rfr_iscdi=true