Shift detection and source identification in multivariate autocorrelated processes

Motivated by the challenges of identifying the true source of shift in multivariate processes, we propose a neural-network-based identifier (NNI) for multivariate autocorrelated processes. A rather extensive performance evaluation of the proposed scheme is carried out, benchmarking it against three...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2010-01, Vol.48 (3), p.835-859
Hauptverfasser: Brian Hwarng, H., Wang, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 859
container_issue 3
container_start_page 835
container_title International journal of production research
container_volume 48
creator Brian Hwarng, H.
Wang, Yu
description Motivated by the challenges of identifying the true source of shift in multivariate processes, we propose a neural-network-based identifier (NNI) for multivariate autocorrelated processes. A rather extensive performance evaluation of the proposed scheme is carried out, benchmarking it against three statistical control charts, namely the Hotelling T 2 control chart, the MEWMA chart, and the Z chart. The comparative study shows the strengths and weaknesses of each control scheme. The proposed NNI is most effective in detecting small-to-moderate shifts and has the most stable run-length property. Designing to identify the source of the shift, the NNI performs more stably than the Z chart under high autocorrelation. The NNI's source identification property can be further improved with the devised alternative decision heuristics. A pair-wise modular approach is also proposed to extend the NNI for multivariate processes.
doi_str_mv 10.1080/00207540802431326
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_22348061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1926409941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-e6ce825b744ef8e7b53c2da658bfa80d0f47542e49f3e79f6233d02c73d4fa6a3</originalsourceid><addsrcrecordid>eNqFkN9rFDEQgINY8Gz9A3xbhOLT1mx-H_hSDrVCQagKvoW5ZIIpu5uaZKv33zftVR880Lwkw3zfzGQIeTnQs4Ea-oZSRrUU7ckEHzhTT8hq4Er10phvT8nqPt83gD8jz0u5pu1II1bk6vP3GGrnsaKrMc0dzL4rackOu-hxrjFEBw-ZOHfTMtZ4CzlCxQ6WmlzKGccW-e4mJ4elYDkhRwHGgi8e72Py9f27L5uL_vLTh4-b88veCaVqj8qhYXKrhcBgUG8ld8yDkmYbwFBPg2jzMhTrwFGvg2Kce8qc5l4EUMCPyet93db5x4Kl2ikWh-MIM6alWC25ktpI3shXf5HX7YdzG86ywWjKFVs3aNhDLqdSMgZ7k-MEeWcHau93bA923JzTx8JQHIwhw-xi-SMyxoWhamjc2z0X55DyBD9THr2tsBtT_i3xf7XR_9UPLFt_VX4HrdGhlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218703629</pqid></control><display><type>article</type><title>Shift detection and source identification in multivariate autocorrelated processes</title><source>Taylor &amp; Francis</source><source>Business Source Complete</source><creator>Brian Hwarng, H. ; Wang, Yu</creator><creatorcontrib>Brian Hwarng, H. ; Wang, Yu</creatorcontrib><description>Motivated by the challenges of identifying the true source of shift in multivariate processes, we propose a neural-network-based identifier (NNI) for multivariate autocorrelated processes. A rather extensive performance evaluation of the proposed scheme is carried out, benchmarking it against three statistical control charts, namely the Hotelling T 2 control chart, the MEWMA chart, and the Z chart. The comparative study shows the strengths and weaknesses of each control scheme. The proposed NNI is most effective in detecting small-to-moderate shifts and has the most stable run-length property. Designing to identify the source of the shift, the NNI performs more stably than the Z chart under high autocorrelation. The NNI's source identification property can be further improved with the devised alternative decision heuristics. A pair-wise modular approach is also proposed to extend the NNI for multivariate processes.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207540802431326</identifier><identifier>CODEN: IJPRB8</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis Group</publisher><subject>Applied sciences ; Autocorrelation ; Benchmarking ; Control charts ; Correlation analysis ; Exact sciences and technology ; forecasting ; Heuristic ; Inventory control, production control. Distribution ; Logistics ; Modular ; Multivariate analysis ; Neural networks ; Operational research and scientific management ; Operational research. Management science ; Performance evaluation ; simulation ; simulation applications ; SPC ; Strength ; Studies ; supply chain management</subject><ispartof>International journal of production research, 2010-01, Vol.48 (3), p.835-859</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Group 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-e6ce825b744ef8e7b53c2da658bfa80d0f47542e49f3e79f6233d02c73d4fa6a3</citedby><cites>FETCH-LOGICAL-c466t-e6ce825b744ef8e7b53c2da658bfa80d0f47542e49f3e79f6233d02c73d4fa6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207540802431326$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207540802431326$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22348061$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Brian Hwarng, H.</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><title>Shift detection and source identification in multivariate autocorrelated processes</title><title>International journal of production research</title><description>Motivated by the challenges of identifying the true source of shift in multivariate processes, we propose a neural-network-based identifier (NNI) for multivariate autocorrelated processes. A rather extensive performance evaluation of the proposed scheme is carried out, benchmarking it against three statistical control charts, namely the Hotelling T 2 control chart, the MEWMA chart, and the Z chart. The comparative study shows the strengths and weaknesses of each control scheme. The proposed NNI is most effective in detecting small-to-moderate shifts and has the most stable run-length property. Designing to identify the source of the shift, the NNI performs more stably than the Z chart under high autocorrelation. The NNI's source identification property can be further improved with the devised alternative decision heuristics. A pair-wise modular approach is also proposed to extend the NNI for multivariate processes.</description><subject>Applied sciences</subject><subject>Autocorrelation</subject><subject>Benchmarking</subject><subject>Control charts</subject><subject>Correlation analysis</subject><subject>Exact sciences and technology</subject><subject>forecasting</subject><subject>Heuristic</subject><subject>Inventory control, production control. Distribution</subject><subject>Logistics</subject><subject>Modular</subject><subject>Multivariate analysis</subject><subject>Neural networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Performance evaluation</subject><subject>simulation</subject><subject>simulation applications</subject><subject>SPC</subject><subject>Strength</subject><subject>Studies</subject><subject>supply chain management</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkN9rFDEQgINY8Gz9A3xbhOLT1mx-H_hSDrVCQagKvoW5ZIIpu5uaZKv33zftVR880Lwkw3zfzGQIeTnQs4Ea-oZSRrUU7ckEHzhTT8hq4Er10phvT8nqPt83gD8jz0u5pu1II1bk6vP3GGrnsaKrMc0dzL4rackOu-hxrjFEBw-ZOHfTMtZ4CzlCxQ6WmlzKGccW-e4mJ4elYDkhRwHGgi8e72Py9f27L5uL_vLTh4-b88veCaVqj8qhYXKrhcBgUG8ld8yDkmYbwFBPg2jzMhTrwFGvg2Kce8qc5l4EUMCPyet93db5x4Kl2ikWh-MIM6alWC25ktpI3shXf5HX7YdzG86ywWjKFVs3aNhDLqdSMgZ7k-MEeWcHau93bA923JzTx8JQHIwhw-xi-SMyxoWhamjc2z0X55DyBD9THr2tsBtT_i3xf7XR_9UPLFt_VX4HrdGhlQ</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Brian Hwarng, H.</creator><creator>Wang, Yu</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100101</creationdate><title>Shift detection and source identification in multivariate autocorrelated processes</title><author>Brian Hwarng, H. ; Wang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-e6ce825b744ef8e7b53c2da658bfa80d0f47542e49f3e79f6233d02c73d4fa6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Autocorrelation</topic><topic>Benchmarking</topic><topic>Control charts</topic><topic>Correlation analysis</topic><topic>Exact sciences and technology</topic><topic>forecasting</topic><topic>Heuristic</topic><topic>Inventory control, production control. Distribution</topic><topic>Logistics</topic><topic>Modular</topic><topic>Multivariate analysis</topic><topic>Neural networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Performance evaluation</topic><topic>simulation</topic><topic>simulation applications</topic><topic>SPC</topic><topic>Strength</topic><topic>Studies</topic><topic>supply chain management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brian Hwarng, H.</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brian Hwarng, H.</au><au>Wang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shift detection and source identification in multivariate autocorrelated processes</atitle><jtitle>International journal of production research</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>48</volume><issue>3</issue><spage>835</spage><epage>859</epage><pages>835-859</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><coden>IJPRB8</coden><abstract>Motivated by the challenges of identifying the true source of shift in multivariate processes, we propose a neural-network-based identifier (NNI) for multivariate autocorrelated processes. A rather extensive performance evaluation of the proposed scheme is carried out, benchmarking it against three statistical control charts, namely the Hotelling T 2 control chart, the MEWMA chart, and the Z chart. The comparative study shows the strengths and weaknesses of each control scheme. The proposed NNI is most effective in detecting small-to-moderate shifts and has the most stable run-length property. Designing to identify the source of the shift, the NNI performs more stably than the Z chart under high autocorrelation. The NNI's source identification property can be further improved with the devised alternative decision heuristics. A pair-wise modular approach is also proposed to extend the NNI for multivariate processes.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00207540802431326</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2010-01, Vol.48 (3), p.835-859
issn 0020-7543
1366-588X
language eng
recordid cdi_pascalfrancis_primary_22348061
source Taylor & Francis; Business Source Complete
subjects Applied sciences
Autocorrelation
Benchmarking
Control charts
Correlation analysis
Exact sciences and technology
forecasting
Heuristic
Inventory control, production control. Distribution
Logistics
Modular
Multivariate analysis
Neural networks
Operational research and scientific management
Operational research. Management science
Performance evaluation
simulation
simulation applications
SPC
Strength
Studies
supply chain management
title Shift detection and source identification in multivariate autocorrelated processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shift%20detection%20and%20source%20identification%20in%20multivariate%20autocorrelated%20processes&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Brian%20Hwarng,%20H.&rft.date=2010-01-01&rft.volume=48&rft.issue=3&rft.spage=835&rft.epage=859&rft.pages=835-859&rft.issn=0020-7543&rft.eissn=1366-588X&rft.coden=IJPRB8&rft_id=info:doi/10.1080/00207540802431326&rft_dat=%3Cproquest_pasca%3E1926409941%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218703629&rft_id=info:pmid/&rfr_iscdi=true