Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity

We study the initial-value problem for a general class of nonlinear nonlocal wave equations arising in one-dimensional nonlocal elasticity. The model involves a convolution integral operator with a general kernel function whose Fourier transform is nonnegative. We show that some well-known examples...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2010-01, Vol.23 (1), p.107-118
Hauptverfasser: Duruk, N, Erbay, H A, Erkip, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue 1
container_start_page 107
container_title Nonlinearity
container_volume 23
creator Duruk, N
Erbay, H A
Erkip, A
description We study the initial-value problem for a general class of nonlinear nonlocal wave equations arising in one-dimensional nonlocal elasticity. The model involves a convolution integral operator with a general kernel function whose Fourier transform is nonnegative. We show that some well-known examples of nonlinear wave equations, such as Boussinesq-type equations, follow from the present model for suitable choices of the kernel function. We establish global existence of solutions of the model assuming enough smoothness on the initial data together with some positivity conditions on the nonlinear term. Furthermore, conditions for finite time blow-up are provided.
doi_str_mv 10.1088/0951-7715/23/1/006
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_22296170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743215715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-ae547a7d6fad15d6ded4f5cea393536be9eb15a1844bf50c0c6ef7a3729916203</originalsourceid><addsrcrecordid>eNp9kMFq3DAURUVJoZO0P9CVNqV04YyeZMn2sgzNNBDopl2LZ1lqVTSSK3lI5u8jM2E2ga70QOdeLoeQj8BugfX9lg0Smq4DueViC1vG1BuyAaGgUbJtr8jmArwj16X8ZQyg52JDpn1IIwZqn3xZbDSWYpzoGNJjc5ypS5kiNQFLocnRmGJIptLr4aPFTHd4NH9OdM5pDPZQKGZffPxNfaS2xhZv_HJ6T946DMV-eHlvyK-7bz9335uHH_v73deHxogelgatbDvsJuVwAjmpyU6tk8aiGIQUarSDHUEi9G07OskMM8q6DkXHhwEUZ-KGfD731jn_jrYs-uCLsSFgtOlYdNcKDrJKqCQ_kyanUrJ1es7-gPmkgenVqF6F6VWY5kKDrkZr6NNLPZZqwWWMxpdLknM-KOjWGV_OnE_z5fd1n54nV9nmNfufDc8qGZFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743215715</pqid></control><display><type>article</type><title>Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity</title><source>Institute of Physics Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Duruk, N ; Erbay, H A ; Erkip, A</creator><creatorcontrib>Duruk, N ; Erbay, H A ; Erkip, A</creatorcontrib><description>We study the initial-value problem for a general class of nonlinear nonlocal wave equations arising in one-dimensional nonlocal elasticity. The model involves a convolution integral operator with a general kernel function whose Fourier transform is nonnegative. We show that some well-known examples of nonlinear wave equations, such as Boussinesq-type equations, follow from the present model for suitable choices of the kernel function. We establish global existence of solutions of the model assuming enough smoothness on the initial data together with some positivity conditions on the nonlinear term. Furthermore, conditions for finite time blow-up are provided.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/0951-7715/23/1/006</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Exact sciences and technology ; Global analysis, analysis on manifolds ; Mathematical analysis ; Mathematical methods in physics ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Other topics in mathematical methods in physics ; Partial differential equations ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Physics ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Nonlinearity, 2010-01, Vol.23 (1), p.107-118</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-ae547a7d6fad15d6ded4f5cea393536be9eb15a1844bf50c0c6ef7a3729916203</citedby><cites>FETCH-LOGICAL-c381t-ae547a7d6fad15d6ded4f5cea393536be9eb15a1844bf50c0c6ef7a3729916203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0951-7715/23/1/006/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,4010,27900,27901,27902,53805,53885</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22296170$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Duruk, N</creatorcontrib><creatorcontrib>Erbay, H A</creatorcontrib><creatorcontrib>Erkip, A</creatorcontrib><title>Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity</title><title>Nonlinearity</title><description>We study the initial-value problem for a general class of nonlinear nonlocal wave equations arising in one-dimensional nonlocal elasticity. The model involves a convolution integral operator with a general kernel function whose Fourier transform is nonnegative. We show that some well-known examples of nonlinear wave equations, such as Boussinesq-type equations, follow from the present model for suitable choices of the kernel function. We establish global existence of solutions of the model assuming enough smoothness on the initial data together with some positivity conditions on the nonlinear term. Furthermore, conditions for finite time blow-up are provided.</description><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Other topics in mathematical methods in physics</subject><subject>Partial differential equations</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAURUVJoZO0P9CVNqV04YyeZMn2sgzNNBDopl2LZ1lqVTSSK3lI5u8jM2E2ga70QOdeLoeQj8BugfX9lg0Smq4DueViC1vG1BuyAaGgUbJtr8jmArwj16X8ZQyg52JDpn1IIwZqn3xZbDSWYpzoGNJjc5ypS5kiNQFLocnRmGJIptLr4aPFTHd4NH9OdM5pDPZQKGZffPxNfaS2xhZv_HJ6T946DMV-eHlvyK-7bz9335uHH_v73deHxogelgatbDvsJuVwAjmpyU6tk8aiGIQUarSDHUEi9G07OskMM8q6DkXHhwEUZ-KGfD731jn_jrYs-uCLsSFgtOlYdNcKDrJKqCQ_kyanUrJ1es7-gPmkgenVqF6F6VWY5kKDrkZr6NNLPZZqwWWMxpdLknM-KOjWGV_OnE_z5fd1n54nV9nmNfufDc8qGZFs</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Duruk, N</creator><creator>Erbay, H A</creator><creator>Erkip, A</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100101</creationdate><title>Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity</title><author>Duruk, N ; Erbay, H A ; Erkip, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-ae547a7d6fad15d6ded4f5cea393536be9eb15a1844bf50c0c6ef7a3729916203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Other topics in mathematical methods in physics</topic><topic>Partial differential equations</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duruk, N</creatorcontrib><creatorcontrib>Erbay, H A</creatorcontrib><creatorcontrib>Erkip, A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duruk, N</au><au>Erbay, H A</au><au>Erkip, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity</atitle><jtitle>Nonlinearity</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>23</volume><issue>1</issue><spage>107</spage><epage>118</epage><pages>107-118</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><abstract>We study the initial-value problem for a general class of nonlinear nonlocal wave equations arising in one-dimensional nonlocal elasticity. The model involves a convolution integral operator with a general kernel function whose Fourier transform is nonnegative. We show that some well-known examples of nonlinear wave equations, such as Boussinesq-type equations, follow from the present model for suitable choices of the kernel function. We establish global existence of solutions of the model assuming enough smoothness on the initial data together with some positivity conditions on the nonlinear term. Furthermore, conditions for finite time blow-up are provided.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0951-7715/23/1/006</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2010-01, Vol.23 (1), p.107-118
issn 0951-7715
1361-6544
language eng
recordid cdi_pascalfrancis_primary_22296170
source Institute of Physics Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Exact sciences and technology
Global analysis, analysis on manifolds
Mathematical analysis
Mathematical methods in physics
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Other topics in mathematical methods in physics
Partial differential equations
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Physics
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A43%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20existence%20and%20blow-up%20for%20a%20class%20of%20nonlocal%20nonlinear%20Cauchy%20problems%20arising%20in%20elasticity&rft.jtitle=Nonlinearity&rft.au=Duruk,%20N&rft.date=2010-01-01&rft.volume=23&rft.issue=1&rft.spage=107&rft.epage=118&rft.pages=107-118&rft.issn=0951-7715&rft.eissn=1361-6544&rft_id=info:doi/10.1088/0951-7715/23/1/006&rft_dat=%3Cproquest_pasca%3E743215715%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743215715&rft_id=info:pmid/&rfr_iscdi=true