Natriuretic Peptides/cGMP/cGMP-Dependent Protein Kinase Cascades Promote Muscle Mitochondrial Biogenesis and Prevent Obesity
Natriuretic Peptides/cGMP/cGMP-Dependent Protein Kinase Cascades Promote Muscle Mitochondrial Biogenesis and Prevent Obesity Kazutoshi Miyashita 1 , Hiroshi Itoh 1 , Hirokazu Tsujimoto 2 , Naohisa Tamura 2 , Yasutomo Fukunaga 2 , Masakatsu Sone 2 , Kenichi Yamahara 2 , Daisuke Taura 2 , Megumi Inuzu...
Gespeichert in:
Veröffentlicht in: | Diabetes (New York, N.Y.) N.Y.), 2009-12, Vol.58 (12), p.2880-2892 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2892 |
---|---|
container_issue | 12 |
container_start_page | 2880 |
container_title | Diabetes (New York, N.Y.) |
container_volume | 58 |
creator | MIYASHITA, Kazutoshi ITOH, Hiroshi NAKAO, Kazuwa TSUJIMOTO, Hirokazu TAMURA, Naohisa FUKUNAGA, Yasutomo SONE, Masakatsu YAMAHARA, Kenichi TAURA, Daisuke INUZUKA, Megumi SONOYAMA, Takuhiro |
description | Natriuretic Peptides/cGMP/cGMP-Dependent Protein Kinase Cascades Promote Muscle Mitochondrial Biogenesis and Prevent Obesity
Kazutoshi Miyashita 1 ,
Hiroshi Itoh 1 ,
Hirokazu Tsujimoto 2 ,
Naohisa Tamura 2 ,
Yasutomo Fukunaga 2 ,
Masakatsu Sone 2 ,
Kenichi Yamahara 2 ,
Daisuke Taura 2 ,
Megumi Inuzuka 2 ,
Takuhiro Sonoyama 2 and
Kazuwa Nakao 2
1 Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan;
2 Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Corresponding author: Hiroshi Itoh, hrith{at}sc.itc.keio.ac.jp .
Abstract
OBJECTIVE Natriuretic peptides (NPs) have been characterized as vascular hormones that regulate vascular tone via guanylyl cyclase
(GC), cyclic GMP (cGMP), and cGMP-dependent protein kinase (cGK). Recent clinical studies have shown that plasma NP levels
were lower in subjects with the metabolic syndrome. The present study was conducted to elucidate the roles for NP/cGK cascades
in energy metabolism.
RESEARCH DESIGN AND METHODS We used three types of genetically engineered mice: brain NP (BNP) transgenic (BNP-Tg), cGK-Tg, and guanylyl cyclase-A (GCA)
heterozygous knockout (GCA +/− ) mice and analyzed the metabolic consequences of chronic activation of NP/cGK cascades in vivo. We also examined the effect
of NPs in cultured myocytes.
RESULTS BNP-Tg mice fed on high-fat diet were protected against diet-induced obesity and insulin resistance, and cGK-Tg mice had
reduced body weight even on standard diet; surprisingly, giant mitochondria were densely packed in the skeletal muscle. Both
mice showed an increase in muscle mitochondrial content and fat oxidation through upregulation of peroxisome proliferator–activated
receptor (PPAR)-γ coactivator (PGC)-1α and PPARδ. The functional NP receptors, GCA and guanylyl cyclase-B, were downregulated
by feeding a high-fat diet, while GCA +/− mice showed increases in body weight and glucose intolerance when fed a high-fat diet. NPs directly increased the expression
of PGC-1α and PPARδ and mitochondrial content in cultured myocytes.
CONCLUSIONS The findings together suggest that NP/cGK cascades can promote muscle mitochondrial biogenesis and fat oxidation, as to prevent
obesity and glucose intolerance. The vascular hormone, NP, would contribute to coordinated regulation of oxygen supply and
consumption.
Footnotes
The costs of publication of this article were defrayed in part by the payment of page charges. This article must |
doi_str_mv | 10.2337/db09-0393 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_22204591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1927273611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-3f031db6bed9a9e765e6e62d5bd1b6f42fc8b36b90abfe4fe890f45032957d9e3</originalsourceid><addsrcrecordid>eNpVkV1rFDEUhoModlu98A_IIHghODYfk8zkRtBVq9javVDwLuTjzG7KbGZNMi0Ff7wZd2mVQM7JOQ_vOeRF6BnBbyhj7akzWNaYSfYALYhksma0_fkQLTAmtCatbI_QcUpXGGNRzmN0RKSQ5cEX6Pc3naOfImRvqxXssneQTu3ZxervVX-AHQQHIVerOGbwofrqg05QLXWyurBzfVs61cWU7FCCz6PdjMFFr4fqvR_XECD5VOngCgvXs9alKaV8-wQ96vWQ4OkhnqAfnz5-X36uzy_PvizfndeWsybXrMeMOCMMOKkltIKDAEEdN44Y0Te0t51hwkisTQ9ND53EfcMxo5K3TgI7QW_3urvJbMHZskLUg9pFv9XxVo3aq_87wW_UerxWtO1wJ0QReHEQiOOvCVJWV-MUQ9lZUSIaiTknBXq1h2wcU4rQ3w0gWM0-qdknNftU2Of_bnRPHowpwMsDMP_z0EcdrE93HKUUN1zOQ1_vuY1fb258BOW8NpAh3Se8U4Qq2nWY_QFr46z8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216490551</pqid></control><display><type>article</type><title>Natriuretic Peptides/cGMP/cGMP-Dependent Protein Kinase Cascades Promote Muscle Mitochondrial Biogenesis and Prevent Obesity</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>MIYASHITA, Kazutoshi ; ITOH, Hiroshi ; NAKAO, Kazuwa ; TSUJIMOTO, Hirokazu ; TAMURA, Naohisa ; FUKUNAGA, Yasutomo ; SONE, Masakatsu ; YAMAHARA, Kenichi ; TAURA, Daisuke ; INUZUKA, Megumi ; SONOYAMA, Takuhiro</creator><creatorcontrib>MIYASHITA, Kazutoshi ; ITOH, Hiroshi ; NAKAO, Kazuwa ; TSUJIMOTO, Hirokazu ; TAMURA, Naohisa ; FUKUNAGA, Yasutomo ; SONE, Masakatsu ; YAMAHARA, Kenichi ; TAURA, Daisuke ; INUZUKA, Megumi ; SONOYAMA, Takuhiro</creatorcontrib><description>Natriuretic Peptides/cGMP/cGMP-Dependent Protein Kinase Cascades Promote Muscle Mitochondrial Biogenesis and Prevent Obesity
Kazutoshi Miyashita 1 ,
Hiroshi Itoh 1 ,
Hirokazu Tsujimoto 2 ,
Naohisa Tamura 2 ,
Yasutomo Fukunaga 2 ,
Masakatsu Sone 2 ,
Kenichi Yamahara 2 ,
Daisuke Taura 2 ,
Megumi Inuzuka 2 ,
Takuhiro Sonoyama 2 and
Kazuwa Nakao 2
1 Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan;
2 Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Corresponding author: Hiroshi Itoh, hrith{at}sc.itc.keio.ac.jp .
Abstract
OBJECTIVE Natriuretic peptides (NPs) have been characterized as vascular hormones that regulate vascular tone via guanylyl cyclase
(GC), cyclic GMP (cGMP), and cGMP-dependent protein kinase (cGK). Recent clinical studies have shown that plasma NP levels
were lower in subjects with the metabolic syndrome. The present study was conducted to elucidate the roles for NP/cGK cascades
in energy metabolism.
RESEARCH DESIGN AND METHODS We used three types of genetically engineered mice: brain NP (BNP) transgenic (BNP-Tg), cGK-Tg, and guanylyl cyclase-A (GCA)
heterozygous knockout (GCA +/− ) mice and analyzed the metabolic consequences of chronic activation of NP/cGK cascades in vivo. We also examined the effect
of NPs in cultured myocytes.
RESULTS BNP-Tg mice fed on high-fat diet were protected against diet-induced obesity and insulin resistance, and cGK-Tg mice had
reduced body weight even on standard diet; surprisingly, giant mitochondria were densely packed in the skeletal muscle. Both
mice showed an increase in muscle mitochondrial content and fat oxidation through upregulation of peroxisome proliferator–activated
receptor (PPAR)-γ coactivator (PGC)-1α and PPARδ. The functional NP receptors, GCA and guanylyl cyclase-B, were downregulated
by feeding a high-fat diet, while GCA +/− mice showed increases in body weight and glucose intolerance when fed a high-fat diet. NPs directly increased the expression
of PGC-1α and PPARδ and mitochondrial content in cultured myocytes.
CONCLUSIONS The findings together suggest that NP/cGK cascades can promote muscle mitochondrial biogenesis and fat oxidation, as to prevent
obesity and glucose intolerance. The vascular hormone, NP, would contribute to coordinated regulation of oxygen supply and
consumption.
Footnotes
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore
be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
See accompanying commentary, p. 2726 . .
Received March 15, 2009.
Accepted July 28, 2009.
© 2009 American Diabetes Association</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db09-0393</identifier><identifier>PMID: 19690065</identifier><identifier>CODEN: DIAEAZ</identifier><language>eng</language><publisher>Alexandria, VA: American Diabetes Association</publisher><subject>Animals ; Biological and medical sciences ; Biosynthesis ; Blood Glucose - metabolism ; Body fat ; Cells, Cultured ; Cyclic GMP - metabolism ; Diabetes ; Diabetes. Impaired glucose tolerance ; Dietary Fats - administration & dosage ; Dietary Fats - adverse effects ; Dietary Fats - metabolism ; Down-Regulation ; Endocrine pancreas. Apud cells (diseases) ; Endocrinopathies ; Etiopathogenesis. Screening. Investigations. Target tissue resistance ; Fatty acids ; Genetic Engineering ; Glucose ; Glucose Intolerance - etiology ; Glucose Intolerance - metabolism ; Heart failure ; Hormones ; Insulin Resistance ; Kinases ; Lipid Peroxidation ; Lipids ; Medical sciences ; Metabolic diseases ; Metabolic syndrome ; Mice ; Mice, Knockout ; Mitochondria - metabolism ; Molecular Sequence Data ; Muscle Cells - metabolism ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; Natriuretic Peptide, Brain - metabolism ; Natriuretic Peptides - metabolism ; Obesity ; Obesity - etiology ; Obesity - metabolism ; Obesity - prevention & control ; Original ; Oxidation ; Oxygen Consumption ; Peptides ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Plasma ; PPAR delta - metabolism ; PPAR gamma - metabolism ; Protein Kinases - metabolism ; Proteins ; Receptors, Atrial Natriuretic Factor - metabolism ; Research design ; Signal transduction ; Trans-Activators - metabolism ; Transcription Factors ; Transgenic animals ; Up-Regulation</subject><ispartof>Diabetes (New York, N.Y.), 2009-12, Vol.58 (12), p.2880-2892</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Diabetes Association Dec 2009</rights><rights>2009 American Diabetes Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-3f031db6bed9a9e765e6e62d5bd1b6f42fc8b36b90abfe4fe890f45032957d9e3</citedby><cites>FETCH-LOGICAL-c534t-3f031db6bed9a9e765e6e62d5bd1b6f42fc8b36b90abfe4fe890f45032957d9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780866/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780866/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22204591$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19690065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MIYASHITA, Kazutoshi</creatorcontrib><creatorcontrib>ITOH, Hiroshi</creatorcontrib><creatorcontrib>NAKAO, Kazuwa</creatorcontrib><creatorcontrib>TSUJIMOTO, Hirokazu</creatorcontrib><creatorcontrib>TAMURA, Naohisa</creatorcontrib><creatorcontrib>FUKUNAGA, Yasutomo</creatorcontrib><creatorcontrib>SONE, Masakatsu</creatorcontrib><creatorcontrib>YAMAHARA, Kenichi</creatorcontrib><creatorcontrib>TAURA, Daisuke</creatorcontrib><creatorcontrib>INUZUKA, Megumi</creatorcontrib><creatorcontrib>SONOYAMA, Takuhiro</creatorcontrib><title>Natriuretic Peptides/cGMP/cGMP-Dependent Protein Kinase Cascades Promote Muscle Mitochondrial Biogenesis and Prevent Obesity</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>Natriuretic Peptides/cGMP/cGMP-Dependent Protein Kinase Cascades Promote Muscle Mitochondrial Biogenesis and Prevent Obesity
Kazutoshi Miyashita 1 ,
Hiroshi Itoh 1 ,
Hirokazu Tsujimoto 2 ,
Naohisa Tamura 2 ,
Yasutomo Fukunaga 2 ,
Masakatsu Sone 2 ,
Kenichi Yamahara 2 ,
Daisuke Taura 2 ,
Megumi Inuzuka 2 ,
Takuhiro Sonoyama 2 and
Kazuwa Nakao 2
1 Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan;
2 Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Corresponding author: Hiroshi Itoh, hrith{at}sc.itc.keio.ac.jp .
Abstract
OBJECTIVE Natriuretic peptides (NPs) have been characterized as vascular hormones that regulate vascular tone via guanylyl cyclase
(GC), cyclic GMP (cGMP), and cGMP-dependent protein kinase (cGK). Recent clinical studies have shown that plasma NP levels
were lower in subjects with the metabolic syndrome. The present study was conducted to elucidate the roles for NP/cGK cascades
in energy metabolism.
RESEARCH DESIGN AND METHODS We used three types of genetically engineered mice: brain NP (BNP) transgenic (BNP-Tg), cGK-Tg, and guanylyl cyclase-A (GCA)
heterozygous knockout (GCA +/− ) mice and analyzed the metabolic consequences of chronic activation of NP/cGK cascades in vivo. We also examined the effect
of NPs in cultured myocytes.
RESULTS BNP-Tg mice fed on high-fat diet were protected against diet-induced obesity and insulin resistance, and cGK-Tg mice had
reduced body weight even on standard diet; surprisingly, giant mitochondria were densely packed in the skeletal muscle. Both
mice showed an increase in muscle mitochondrial content and fat oxidation through upregulation of peroxisome proliferator–activated
receptor (PPAR)-γ coactivator (PGC)-1α and PPARδ. The functional NP receptors, GCA and guanylyl cyclase-B, were downregulated
by feeding a high-fat diet, while GCA +/− mice showed increases in body weight and glucose intolerance when fed a high-fat diet. NPs directly increased the expression
of PGC-1α and PPARδ and mitochondrial content in cultured myocytes.
CONCLUSIONS The findings together suggest that NP/cGK cascades can promote muscle mitochondrial biogenesis and fat oxidation, as to prevent
obesity and glucose intolerance. The vascular hormone, NP, would contribute to coordinated regulation of oxygen supply and
consumption.
Footnotes
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore
be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
See accompanying commentary, p. 2726 . .
Received March 15, 2009.
Accepted July 28, 2009.
© 2009 American Diabetes Association</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Blood Glucose - metabolism</subject><subject>Body fat</subject><subject>Cells, Cultured</subject><subject>Cyclic GMP - metabolism</subject><subject>Diabetes</subject><subject>Diabetes. Impaired glucose tolerance</subject><subject>Dietary Fats - administration & dosage</subject><subject>Dietary Fats - adverse effects</subject><subject>Dietary Fats - metabolism</subject><subject>Down-Regulation</subject><subject>Endocrine pancreas. Apud cells (diseases)</subject><subject>Endocrinopathies</subject><subject>Etiopathogenesis. Screening. Investigations. Target tissue resistance</subject><subject>Fatty acids</subject><subject>Genetic Engineering</subject><subject>Glucose</subject><subject>Glucose Intolerance - etiology</subject><subject>Glucose Intolerance - metabolism</subject><subject>Heart failure</subject><subject>Hormones</subject><subject>Insulin Resistance</subject><subject>Kinases</subject><subject>Lipid Peroxidation</subject><subject>Lipids</subject><subject>Medical sciences</subject><subject>Metabolic diseases</subject><subject>Metabolic syndrome</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Muscle Cells - metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>Natriuretic Peptide, Brain - metabolism</subject><subject>Natriuretic Peptides - metabolism</subject><subject>Obesity</subject><subject>Obesity - etiology</subject><subject>Obesity - metabolism</subject><subject>Obesity - prevention & control</subject><subject>Original</subject><subject>Oxidation</subject><subject>Oxygen Consumption</subject><subject>Peptides</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>Plasma</subject><subject>PPAR delta - metabolism</subject><subject>PPAR gamma - metabolism</subject><subject>Protein Kinases - metabolism</subject><subject>Proteins</subject><subject>Receptors, Atrial Natriuretic Factor - metabolism</subject><subject>Research design</subject><subject>Signal transduction</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors</subject><subject>Transgenic animals</subject><subject>Up-Regulation</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVkV1rFDEUhoModlu98A_IIHghODYfk8zkRtBVq9javVDwLuTjzG7KbGZNMi0Ff7wZd2mVQM7JOQ_vOeRF6BnBbyhj7akzWNaYSfYALYhksma0_fkQLTAmtCatbI_QcUpXGGNRzmN0RKSQ5cEX6Pc3naOfImRvqxXssneQTu3ZxervVX-AHQQHIVerOGbwofrqg05QLXWyurBzfVs61cWU7FCCz6PdjMFFr4fqvR_XECD5VOngCgvXs9alKaV8-wQ96vWQ4OkhnqAfnz5-X36uzy_PvizfndeWsybXrMeMOCMMOKkltIKDAEEdN44Y0Te0t51hwkisTQ9ND53EfcMxo5K3TgI7QW_3urvJbMHZskLUg9pFv9XxVo3aq_87wW_UerxWtO1wJ0QReHEQiOOvCVJWV-MUQ9lZUSIaiTknBXq1h2wcU4rQ3w0gWM0-qdknNftU2Of_bnRPHowpwMsDMP_z0EcdrE93HKUUN1zOQ1_vuY1fb258BOW8NpAh3Se8U4Qq2nWY_QFr46z8</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>MIYASHITA, Kazutoshi</creator><creator>ITOH, Hiroshi</creator><creator>NAKAO, Kazuwa</creator><creator>TSUJIMOTO, Hirokazu</creator><creator>TAMURA, Naohisa</creator><creator>FUKUNAGA, Yasutomo</creator><creator>SONE, Masakatsu</creator><creator>YAMAHARA, Kenichi</creator><creator>TAURA, Daisuke</creator><creator>INUZUKA, Megumi</creator><creator>SONOYAMA, Takuhiro</creator><general>American Diabetes Association</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>5PM</scope></search><sort><creationdate>20091201</creationdate><title>Natriuretic Peptides/cGMP/cGMP-Dependent Protein Kinase Cascades Promote Muscle Mitochondrial Biogenesis and Prevent Obesity</title><author>MIYASHITA, Kazutoshi ; ITOH, Hiroshi ; NAKAO, Kazuwa ; TSUJIMOTO, Hirokazu ; TAMURA, Naohisa ; FUKUNAGA, Yasutomo ; SONE, Masakatsu ; YAMAHARA, Kenichi ; TAURA, Daisuke ; INUZUKA, Megumi ; SONOYAMA, Takuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-3f031db6bed9a9e765e6e62d5bd1b6f42fc8b36b90abfe4fe890f45032957d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Blood Glucose - metabolism</topic><topic>Body fat</topic><topic>Cells, Cultured</topic><topic>Cyclic GMP - metabolism</topic><topic>Diabetes</topic><topic>Diabetes. Impaired glucose tolerance</topic><topic>Dietary Fats - administration & dosage</topic><topic>Dietary Fats - adverse effects</topic><topic>Dietary Fats - metabolism</topic><topic>Down-Regulation</topic><topic>Endocrine pancreas. Apud cells (diseases)</topic><topic>Endocrinopathies</topic><topic>Etiopathogenesis. Screening. Investigations. Target tissue resistance</topic><topic>Fatty acids</topic><topic>Genetic Engineering</topic><topic>Glucose</topic><topic>Glucose Intolerance - etiology</topic><topic>Glucose Intolerance - metabolism</topic><topic>Heart failure</topic><topic>Hormones</topic><topic>Insulin Resistance</topic><topic>Kinases</topic><topic>Lipid Peroxidation</topic><topic>Lipids</topic><topic>Medical sciences</topic><topic>Metabolic diseases</topic><topic>Metabolic syndrome</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Muscle Cells - metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>Natriuretic Peptide, Brain - metabolism</topic><topic>Natriuretic Peptides - metabolism</topic><topic>Obesity</topic><topic>Obesity - etiology</topic><topic>Obesity - metabolism</topic><topic>Obesity - prevention & control</topic><topic>Original</topic><topic>Oxidation</topic><topic>Oxygen Consumption</topic><topic>Peptides</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>Plasma</topic><topic>PPAR delta - metabolism</topic><topic>PPAR gamma - metabolism</topic><topic>Protein Kinases - metabolism</topic><topic>Proteins</topic><topic>Receptors, Atrial Natriuretic Factor - metabolism</topic><topic>Research design</topic><topic>Signal transduction</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors</topic><topic>Transgenic animals</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MIYASHITA, Kazutoshi</creatorcontrib><creatorcontrib>ITOH, Hiroshi</creatorcontrib><creatorcontrib>NAKAO, Kazuwa</creatorcontrib><creatorcontrib>TSUJIMOTO, Hirokazu</creatorcontrib><creatorcontrib>TAMURA, Naohisa</creatorcontrib><creatorcontrib>FUKUNAGA, Yasutomo</creatorcontrib><creatorcontrib>SONE, Masakatsu</creatorcontrib><creatorcontrib>YAMAHARA, Kenichi</creatorcontrib><creatorcontrib>TAURA, Daisuke</creatorcontrib><creatorcontrib>INUZUKA, Megumi</creatorcontrib><creatorcontrib>SONOYAMA, Takuhiro</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MIYASHITA, Kazutoshi</au><au>ITOH, Hiroshi</au><au>NAKAO, Kazuwa</au><au>TSUJIMOTO, Hirokazu</au><au>TAMURA, Naohisa</au><au>FUKUNAGA, Yasutomo</au><au>SONE, Masakatsu</au><au>YAMAHARA, Kenichi</au><au>TAURA, Daisuke</au><au>INUZUKA, Megumi</au><au>SONOYAMA, Takuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natriuretic Peptides/cGMP/cGMP-Dependent Protein Kinase Cascades Promote Muscle Mitochondrial Biogenesis and Prevent Obesity</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>58</volume><issue>12</issue><spage>2880</spage><epage>2892</epage><pages>2880-2892</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><coden>DIAEAZ</coden><abstract>Natriuretic Peptides/cGMP/cGMP-Dependent Protein Kinase Cascades Promote Muscle Mitochondrial Biogenesis and Prevent Obesity
Kazutoshi Miyashita 1 ,
Hiroshi Itoh 1 ,
Hirokazu Tsujimoto 2 ,
Naohisa Tamura 2 ,
Yasutomo Fukunaga 2 ,
Masakatsu Sone 2 ,
Kenichi Yamahara 2 ,
Daisuke Taura 2 ,
Megumi Inuzuka 2 ,
Takuhiro Sonoyama 2 and
Kazuwa Nakao 2
1 Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan;
2 Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Corresponding author: Hiroshi Itoh, hrith{at}sc.itc.keio.ac.jp .
Abstract
OBJECTIVE Natriuretic peptides (NPs) have been characterized as vascular hormones that regulate vascular tone via guanylyl cyclase
(GC), cyclic GMP (cGMP), and cGMP-dependent protein kinase (cGK). Recent clinical studies have shown that plasma NP levels
were lower in subjects with the metabolic syndrome. The present study was conducted to elucidate the roles for NP/cGK cascades
in energy metabolism.
RESEARCH DESIGN AND METHODS We used three types of genetically engineered mice: brain NP (BNP) transgenic (BNP-Tg), cGK-Tg, and guanylyl cyclase-A (GCA)
heterozygous knockout (GCA +/− ) mice and analyzed the metabolic consequences of chronic activation of NP/cGK cascades in vivo. We also examined the effect
of NPs in cultured myocytes.
RESULTS BNP-Tg mice fed on high-fat diet were protected against diet-induced obesity and insulin resistance, and cGK-Tg mice had
reduced body weight even on standard diet; surprisingly, giant mitochondria were densely packed in the skeletal muscle. Both
mice showed an increase in muscle mitochondrial content and fat oxidation through upregulation of peroxisome proliferator–activated
receptor (PPAR)-γ coactivator (PGC)-1α and PPARδ. The functional NP receptors, GCA and guanylyl cyclase-B, were downregulated
by feeding a high-fat diet, while GCA +/− mice showed increases in body weight and glucose intolerance when fed a high-fat diet. NPs directly increased the expression
of PGC-1α and PPARδ and mitochondrial content in cultured myocytes.
CONCLUSIONS The findings together suggest that NP/cGK cascades can promote muscle mitochondrial biogenesis and fat oxidation, as to prevent
obesity and glucose intolerance. The vascular hormone, NP, would contribute to coordinated regulation of oxygen supply and
consumption.
Footnotes
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore
be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
See accompanying commentary, p. 2726 . .
Received March 15, 2009.
Accepted July 28, 2009.
© 2009 American Diabetes Association</abstract><cop>Alexandria, VA</cop><pub>American Diabetes Association</pub><pmid>19690065</pmid><doi>10.2337/db09-0393</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-1797 |
ispartof | Diabetes (New York, N.Y.), 2009-12, Vol.58 (12), p.2880-2892 |
issn | 0012-1797 1939-327X |
language | eng |
recordid | cdi_pascalfrancis_primary_22204591 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Biological and medical sciences Biosynthesis Blood Glucose - metabolism Body fat Cells, Cultured Cyclic GMP - metabolism Diabetes Diabetes. Impaired glucose tolerance Dietary Fats - administration & dosage Dietary Fats - adverse effects Dietary Fats - metabolism Down-Regulation Endocrine pancreas. Apud cells (diseases) Endocrinopathies Etiopathogenesis. Screening. Investigations. Target tissue resistance Fatty acids Genetic Engineering Glucose Glucose Intolerance - etiology Glucose Intolerance - metabolism Heart failure Hormones Insulin Resistance Kinases Lipid Peroxidation Lipids Medical sciences Metabolic diseases Metabolic syndrome Mice Mice, Knockout Mitochondria - metabolism Molecular Sequence Data Muscle Cells - metabolism Muscle, Skeletal - metabolism Musculoskeletal system Natriuretic Peptide, Brain - metabolism Natriuretic Peptides - metabolism Obesity Obesity - etiology Obesity - metabolism Obesity - prevention & control Original Oxidation Oxygen Consumption Peptides Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha Plasma PPAR delta - metabolism PPAR gamma - metabolism Protein Kinases - metabolism Proteins Receptors, Atrial Natriuretic Factor - metabolism Research design Signal transduction Trans-Activators - metabolism Transcription Factors Transgenic animals Up-Regulation |
title | Natriuretic Peptides/cGMP/cGMP-Dependent Protein Kinase Cascades Promote Muscle Mitochondrial Biogenesis and Prevent Obesity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A36%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natriuretic%20Peptides/cGMP/cGMP-Dependent%20Protein%20Kinase%20Cascades%20Promote%20Muscle%20Mitochondrial%20Biogenesis%20and%20Prevent%20Obesity&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=MIYASHITA,%20Kazutoshi&rft.date=2009-12-01&rft.volume=58&rft.issue=12&rft.spage=2880&rft.epage=2892&rft.pages=2880-2892&rft.issn=0012-1797&rft.eissn=1939-327X&rft.coden=DIAEAZ&rft_id=info:doi/10.2337/db09-0393&rft_dat=%3Cproquest_pasca%3E1927273611%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216490551&rft_id=info:pmid/19690065&rfr_iscdi=true |