Zero-Bias Mixer Based on AlGaN/GaN Lateral Field-Effect Diodes for High-Temperature Wireless Sensor and RFID Applications

In this paper, a zero-bias mixer using a lateral field-effect diode fabricated on standard GaN-on-Si AlGaN/GaN high-electron-mobility-transistor wafers is demonstrated. The diode features strong nonlinearity near zero bias, enabled by a threshold-voltage modulation using a fluorine-plasma-treatment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2009-12, Vol.56 (12), p.2888-2894
Hauptverfasser: King-Yuen Wong, Wanjun Chen, Qi Zhou, Chen, K.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2894
container_issue 12
container_start_page 2888
container_title IEEE transactions on electron devices
container_volume 56
creator King-Yuen Wong
Wanjun Chen
Qi Zhou
Chen, K.J.
description In this paper, a zero-bias mixer using a lateral field-effect diode fabricated on standard GaN-on-Si AlGaN/GaN high-electron-mobility-transistor wafers is demonstrated. The diode features strong nonlinearity near zero bias, enabled by a threshold-voltage modulation using a fluorine-plasma-treatment technique. The maximum change in conductance was adjusted to ~0 V, leading to optimal conversion loss (CL) of the mixer at zero bias and eliminating the need for any dc supplies. The mixer is characterized from room temperature (RT) to 250degC . At 2.5 GHz and at RT, the CL and third-order intermodulation intercept point are 12.9 dB and 17.64 dBm, respectively. The operation of the proposed diode is modeled by a physical equivalent circuit, with the element values extracted from the measured S-parameters. The voltage-biasing dependence of the CL can be explained by the model. The high-temperature operation of the mixer shows that the proposed mixer can perform well in high-temperature and ultralow-power applications.
doi_str_mv 10.1109/TED.2009.2032279
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_22162430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5306159</ieee_id><sourcerecordid>1671333281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-71b56c373f5f23fc71ffe55debfb8695caa6cb2025975d34671530f7382876b13</originalsourceid><addsrcrecordid>eNp9kUFrGzEQhUVpoW6ae6EXUWjJZRNJs5J2j05sJwG3hdSl0Mui1Y5aBXl3K60h-feRsckhhx5mhmG-ecPwCPnA2TnnrL7YLBfngrE6JxBC16_IjEupi1qV6jWZMcarooYK3pJ3Kd3nVpWlmJHH3xiH4tKbRL_6B4z00iTs6NDTebg23y5y0LWZMJpAVx5DVyydQzvRhR86TNQNkd74P3-LDW7HTE27iPSXjxgwJfoD-5QB03f0bnW7oPNxDN6ayQ99ek_eOBMSnh7rCfm5Wm6ubor19-vbq_m6sFCVU6F5K5UFDU46Ac5qnu9L2WHr2krV0hqjbCuYkLWWHZRKcwnMaahEpVXL4YR8OeiOcfi3wzQ1W58shmB6HHapAQWKc11m8Oy_IM_SACCqveanF-j9sIt9fqOppKqB8VJkiB0gG4eUIrpmjH5r4mPDWbP3rMmeNXvPmqNneeXzUdcka4KLprc-Pe8JwZUogWXu44HziPg8zn8rLmt4AsXMnNc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856930142</pqid></control><display><type>article</type><title>Zero-Bias Mixer Based on AlGaN/GaN Lateral Field-Effect Diodes for High-Temperature Wireless Sensor and RFID Applications</title><source>IEEE Electronic Library (IEL)</source><creator>King-Yuen Wong ; Wanjun Chen ; Qi Zhou ; Chen, K.J.</creator><creatorcontrib>King-Yuen Wong ; Wanjun Chen ; Qi Zhou ; Chen, K.J.</creatorcontrib><description>In this paper, a zero-bias mixer using a lateral field-effect diode fabricated on standard GaN-on-Si AlGaN/GaN high-electron-mobility-transistor wafers is demonstrated. The diode features strong nonlinearity near zero bias, enabled by a threshold-voltage modulation using a fluorine-plasma-treatment technique. The maximum change in conductance was adjusted to ~0 V, leading to optimal conversion loss (CL) of the mixer at zero bias and eliminating the need for any dc supplies. The mixer is characterized from room temperature (RT) to 250degC . At 2.5 GHz and at RT, the CL and third-order intermodulation intercept point are 12.9 dB and 17.64 dBm, respectively. The operation of the proposed diode is modeled by a physical equivalent circuit, with the element values extracted from the measured S-parameters. The voltage-biasing dependence of the CL can be explained by the model. The high-temperature operation of the mixer shows that the proposed mixer can perform well in high-temperature and ultralow-power applications.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2009.2032279</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>AlGaN/GaN ; Aluminum gallium nitride ; Aluminum gallium nitrides ; Applied sciences ; Bias ; Devices ; Diodes ; Electronics ; Exact sciences and technology ; field-effect diode (FED) ; Gallium nitride ; Gallium nitrides ; General equipment and techniques ; HEMTs ; high-temperature wireless sensor ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Intermodulation ; Mixers ; Modulation ; Physics ; Radiofrequency identification ; Schottky diodes ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Temperature measurement ; thermal factors and integration process ; Transistors ; Wireless sensor networks ; zero-bias mixer</subject><ispartof>IEEE transactions on electron devices, 2009-12, Vol.56 (12), p.2888-2894</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-71b56c373f5f23fc71ffe55debfb8695caa6cb2025975d34671530f7382876b13</citedby><cites>FETCH-LOGICAL-c384t-71b56c373f5f23fc71ffe55debfb8695caa6cb2025975d34671530f7382876b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5306159$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5306159$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22162430$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>King-Yuen Wong</creatorcontrib><creatorcontrib>Wanjun Chen</creatorcontrib><creatorcontrib>Qi Zhou</creatorcontrib><creatorcontrib>Chen, K.J.</creatorcontrib><title>Zero-Bias Mixer Based on AlGaN/GaN Lateral Field-Effect Diodes for High-Temperature Wireless Sensor and RFID Applications</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this paper, a zero-bias mixer using a lateral field-effect diode fabricated on standard GaN-on-Si AlGaN/GaN high-electron-mobility-transistor wafers is demonstrated. The diode features strong nonlinearity near zero bias, enabled by a threshold-voltage modulation using a fluorine-plasma-treatment technique. The maximum change in conductance was adjusted to ~0 V, leading to optimal conversion loss (CL) of the mixer at zero bias and eliminating the need for any dc supplies. The mixer is characterized from room temperature (RT) to 250degC . At 2.5 GHz and at RT, the CL and third-order intermodulation intercept point are 12.9 dB and 17.64 dBm, respectively. The operation of the proposed diode is modeled by a physical equivalent circuit, with the element values extracted from the measured S-parameters. The voltage-biasing dependence of the CL can be explained by the model. The high-temperature operation of the mixer shows that the proposed mixer can perform well in high-temperature and ultralow-power applications.</description><subject>AlGaN/GaN</subject><subject>Aluminum gallium nitride</subject><subject>Aluminum gallium nitrides</subject><subject>Applied sciences</subject><subject>Bias</subject><subject>Devices</subject><subject>Diodes</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>field-effect diode (FED)</subject><subject>Gallium nitride</subject><subject>Gallium nitrides</subject><subject>General equipment and techniques</subject><subject>HEMTs</subject><subject>high-temperature wireless sensor</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Intermodulation</subject><subject>Mixers</subject><subject>Modulation</subject><subject>Physics</subject><subject>Radiofrequency identification</subject><subject>Schottky diodes</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Temperature measurement</subject><subject>thermal factors and integration process</subject><subject>Transistors</subject><subject>Wireless sensor networks</subject><subject>zero-bias mixer</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUFrGzEQhUVpoW6ae6EXUWjJZRNJs5J2j05sJwG3hdSl0Mui1Y5aBXl3K60h-feRsckhhx5mhmG-ecPwCPnA2TnnrL7YLBfngrE6JxBC16_IjEupi1qV6jWZMcarooYK3pJ3Kd3nVpWlmJHH3xiH4tKbRL_6B4z00iTs6NDTebg23y5y0LWZMJpAVx5DVyydQzvRhR86TNQNkd74P3-LDW7HTE27iPSXjxgwJfoD-5QB03f0bnW7oPNxDN6ayQ99ek_eOBMSnh7rCfm5Wm6ubor19-vbq_m6sFCVU6F5K5UFDU46Ac5qnu9L2WHr2krV0hqjbCuYkLWWHZRKcwnMaahEpVXL4YR8OeiOcfi3wzQ1W58shmB6HHapAQWKc11m8Oy_IM_SACCqveanF-j9sIt9fqOppKqB8VJkiB0gG4eUIrpmjH5r4mPDWbP3rMmeNXvPmqNneeXzUdcka4KLprc-Pe8JwZUogWXu44HziPg8zn8rLmt4AsXMnNc</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>King-Yuen Wong</creator><creator>Wanjun Chen</creator><creator>Qi Zhou</creator><creator>Chen, K.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7QF</scope><scope>7QQ</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20091201</creationdate><title>Zero-Bias Mixer Based on AlGaN/GaN Lateral Field-Effect Diodes for High-Temperature Wireless Sensor and RFID Applications</title><author>King-Yuen Wong ; Wanjun Chen ; Qi Zhou ; Chen, K.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-71b56c373f5f23fc71ffe55debfb8695caa6cb2025975d34671530f7382876b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>AlGaN/GaN</topic><topic>Aluminum gallium nitride</topic><topic>Aluminum gallium nitrides</topic><topic>Applied sciences</topic><topic>Bias</topic><topic>Devices</topic><topic>Diodes</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>field-effect diode (FED)</topic><topic>Gallium nitride</topic><topic>Gallium nitrides</topic><topic>General equipment and techniques</topic><topic>HEMTs</topic><topic>high-temperature wireless sensor</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Intermodulation</topic><topic>Mixers</topic><topic>Modulation</topic><topic>Physics</topic><topic>Radiofrequency identification</topic><topic>Schottky diodes</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Temperature measurement</topic><topic>thermal factors and integration process</topic><topic>Transistors</topic><topic>Wireless sensor networks</topic><topic>zero-bias mixer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>King-Yuen Wong</creatorcontrib><creatorcontrib>Wanjun Chen</creatorcontrib><creatorcontrib>Qi Zhou</creatorcontrib><creatorcontrib>Chen, K.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>King-Yuen Wong</au><au>Wanjun Chen</au><au>Qi Zhou</au><au>Chen, K.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero-Bias Mixer Based on AlGaN/GaN Lateral Field-Effect Diodes for High-Temperature Wireless Sensor and RFID Applications</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>56</volume><issue>12</issue><spage>2888</spage><epage>2894</epage><pages>2888-2894</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this paper, a zero-bias mixer using a lateral field-effect diode fabricated on standard GaN-on-Si AlGaN/GaN high-electron-mobility-transistor wafers is demonstrated. The diode features strong nonlinearity near zero bias, enabled by a threshold-voltage modulation using a fluorine-plasma-treatment technique. The maximum change in conductance was adjusted to ~0 V, leading to optimal conversion loss (CL) of the mixer at zero bias and eliminating the need for any dc supplies. The mixer is characterized from room temperature (RT) to 250degC . At 2.5 GHz and at RT, the CL and third-order intermodulation intercept point are 12.9 dB and 17.64 dBm, respectively. The operation of the proposed diode is modeled by a physical equivalent circuit, with the element values extracted from the measured S-parameters. The voltage-biasing dependence of the CL can be explained by the model. The high-temperature operation of the mixer shows that the proposed mixer can perform well in high-temperature and ultralow-power applications.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2009.2032279</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2009-12, Vol.56 (12), p.2888-2894
issn 0018-9383
1557-9646
language eng
recordid cdi_pascalfrancis_primary_22162430
source IEEE Electronic Library (IEL)
subjects AlGaN/GaN
Aluminum gallium nitride
Aluminum gallium nitrides
Applied sciences
Bias
Devices
Diodes
Electronics
Exact sciences and technology
field-effect diode (FED)
Gallium nitride
Gallium nitrides
General equipment and techniques
HEMTs
high-temperature wireless sensor
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Intermodulation
Mixers
Modulation
Physics
Radiofrequency identification
Schottky diodes
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
Temperature measurement
thermal factors and integration process
Transistors
Wireless sensor networks
zero-bias mixer
title Zero-Bias Mixer Based on AlGaN/GaN Lateral Field-Effect Diodes for High-Temperature Wireless Sensor and RFID Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero-Bias%20Mixer%20Based%20on%20AlGaN/GaN%20Lateral%20Field-Effect%20Diodes%20for%20High-Temperature%20Wireless%20Sensor%20and%20RFID%20Applications&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=King-Yuen%20Wong&rft.date=2009-12-01&rft.volume=56&rft.issue=12&rft.spage=2888&rft.epage=2894&rft.pages=2888-2894&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2009.2032279&rft_dat=%3Cproquest_RIE%3E1671333281%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856930142&rft_id=info:pmid/&rft_ieee_id=5306159&rfr_iscdi=true