Zero-Bias Mixer Based on AlGaN/GaN Lateral Field-Effect Diodes for High-Temperature Wireless Sensor and RFID Applications
In this paper, a zero-bias mixer using a lateral field-effect diode fabricated on standard GaN-on-Si AlGaN/GaN high-electron-mobility-transistor wafers is demonstrated. The diode features strong nonlinearity near zero bias, enabled by a threshold-voltage modulation using a fluorine-plasma-treatment...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2009-12, Vol.56 (12), p.2888-2894 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2894 |
---|---|
container_issue | 12 |
container_start_page | 2888 |
container_title | IEEE transactions on electron devices |
container_volume | 56 |
creator | King-Yuen Wong Wanjun Chen Qi Zhou Chen, K.J. |
description | In this paper, a zero-bias mixer using a lateral field-effect diode fabricated on standard GaN-on-Si AlGaN/GaN high-electron-mobility-transistor wafers is demonstrated. The diode features strong nonlinearity near zero bias, enabled by a threshold-voltage modulation using a fluorine-plasma-treatment technique. The maximum change in conductance was adjusted to ~0 V, leading to optimal conversion loss (CL) of the mixer at zero bias and eliminating the need for any dc supplies. The mixer is characterized from room temperature (RT) to 250degC . At 2.5 GHz and at RT, the CL and third-order intermodulation intercept point are 12.9 dB and 17.64 dBm, respectively. The operation of the proposed diode is modeled by a physical equivalent circuit, with the element values extracted from the measured S-parameters. The voltage-biasing dependence of the CL can be explained by the model. The high-temperature operation of the mixer shows that the proposed mixer can perform well in high-temperature and ultralow-power applications. |
doi_str_mv | 10.1109/TED.2009.2032279 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_22162430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5306159</ieee_id><sourcerecordid>1671333281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-71b56c373f5f23fc71ffe55debfb8695caa6cb2025975d34671530f7382876b13</originalsourceid><addsrcrecordid>eNp9kUFrGzEQhUVpoW6ae6EXUWjJZRNJs5J2j05sJwG3hdSl0Mui1Y5aBXl3K60h-feRsckhhx5mhmG-ecPwCPnA2TnnrL7YLBfngrE6JxBC16_IjEupi1qV6jWZMcarooYK3pJ3Kd3nVpWlmJHH3xiH4tKbRL_6B4z00iTs6NDTebg23y5y0LWZMJpAVx5DVyydQzvRhR86TNQNkd74P3-LDW7HTE27iPSXjxgwJfoD-5QB03f0bnW7oPNxDN6ayQ99ek_eOBMSnh7rCfm5Wm6ubor19-vbq_m6sFCVU6F5K5UFDU46Ac5qnu9L2WHr2krV0hqjbCuYkLWWHZRKcwnMaahEpVXL4YR8OeiOcfi3wzQ1W58shmB6HHapAQWKc11m8Oy_IM_SACCqveanF-j9sIt9fqOppKqB8VJkiB0gG4eUIrpmjH5r4mPDWbP3rMmeNXvPmqNneeXzUdcka4KLprc-Pe8JwZUogWXu44HziPg8zn8rLmt4AsXMnNc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856930142</pqid></control><display><type>article</type><title>Zero-Bias Mixer Based on AlGaN/GaN Lateral Field-Effect Diodes for High-Temperature Wireless Sensor and RFID Applications</title><source>IEEE Electronic Library (IEL)</source><creator>King-Yuen Wong ; Wanjun Chen ; Qi Zhou ; Chen, K.J.</creator><creatorcontrib>King-Yuen Wong ; Wanjun Chen ; Qi Zhou ; Chen, K.J.</creatorcontrib><description>In this paper, a zero-bias mixer using a lateral field-effect diode fabricated on standard GaN-on-Si AlGaN/GaN high-electron-mobility-transistor wafers is demonstrated. The diode features strong nonlinearity near zero bias, enabled by a threshold-voltage modulation using a fluorine-plasma-treatment technique. The maximum change in conductance was adjusted to ~0 V, leading to optimal conversion loss (CL) of the mixer at zero bias and eliminating the need for any dc supplies. The mixer is characterized from room temperature (RT) to 250degC . At 2.5 GHz and at RT, the CL and third-order intermodulation intercept point are 12.9 dB and 17.64 dBm, respectively. The operation of the proposed diode is modeled by a physical equivalent circuit, with the element values extracted from the measured S-parameters. The voltage-biasing dependence of the CL can be explained by the model. The high-temperature operation of the mixer shows that the proposed mixer can perform well in high-temperature and ultralow-power applications.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2009.2032279</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>AlGaN/GaN ; Aluminum gallium nitride ; Aluminum gallium nitrides ; Applied sciences ; Bias ; Devices ; Diodes ; Electronics ; Exact sciences and technology ; field-effect diode (FED) ; Gallium nitride ; Gallium nitrides ; General equipment and techniques ; HEMTs ; high-temperature wireless sensor ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Intermodulation ; Mixers ; Modulation ; Physics ; Radiofrequency identification ; Schottky diodes ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Temperature measurement ; thermal factors and integration process ; Transistors ; Wireless sensor networks ; zero-bias mixer</subject><ispartof>IEEE transactions on electron devices, 2009-12, Vol.56 (12), p.2888-2894</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-71b56c373f5f23fc71ffe55debfb8695caa6cb2025975d34671530f7382876b13</citedby><cites>FETCH-LOGICAL-c384t-71b56c373f5f23fc71ffe55debfb8695caa6cb2025975d34671530f7382876b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5306159$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5306159$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22162430$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>King-Yuen Wong</creatorcontrib><creatorcontrib>Wanjun Chen</creatorcontrib><creatorcontrib>Qi Zhou</creatorcontrib><creatorcontrib>Chen, K.J.</creatorcontrib><title>Zero-Bias Mixer Based on AlGaN/GaN Lateral Field-Effect Diodes for High-Temperature Wireless Sensor and RFID Applications</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this paper, a zero-bias mixer using a lateral field-effect diode fabricated on standard GaN-on-Si AlGaN/GaN high-electron-mobility-transistor wafers is demonstrated. The diode features strong nonlinearity near zero bias, enabled by a threshold-voltage modulation using a fluorine-plasma-treatment technique. The maximum change in conductance was adjusted to ~0 V, leading to optimal conversion loss (CL) of the mixer at zero bias and eliminating the need for any dc supplies. The mixer is characterized from room temperature (RT) to 250degC . At 2.5 GHz and at RT, the CL and third-order intermodulation intercept point are 12.9 dB and 17.64 dBm, respectively. The operation of the proposed diode is modeled by a physical equivalent circuit, with the element values extracted from the measured S-parameters. The voltage-biasing dependence of the CL can be explained by the model. The high-temperature operation of the mixer shows that the proposed mixer can perform well in high-temperature and ultralow-power applications.</description><subject>AlGaN/GaN</subject><subject>Aluminum gallium nitride</subject><subject>Aluminum gallium nitrides</subject><subject>Applied sciences</subject><subject>Bias</subject><subject>Devices</subject><subject>Diodes</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>field-effect diode (FED)</subject><subject>Gallium nitride</subject><subject>Gallium nitrides</subject><subject>General equipment and techniques</subject><subject>HEMTs</subject><subject>high-temperature wireless sensor</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Intermodulation</subject><subject>Mixers</subject><subject>Modulation</subject><subject>Physics</subject><subject>Radiofrequency identification</subject><subject>Schottky diodes</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Temperature measurement</subject><subject>thermal factors and integration process</subject><subject>Transistors</subject><subject>Wireless sensor networks</subject><subject>zero-bias mixer</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUFrGzEQhUVpoW6ae6EXUWjJZRNJs5J2j05sJwG3hdSl0Mui1Y5aBXl3K60h-feRsckhhx5mhmG-ecPwCPnA2TnnrL7YLBfngrE6JxBC16_IjEupi1qV6jWZMcarooYK3pJ3Kd3nVpWlmJHH3xiH4tKbRL_6B4z00iTs6NDTebg23y5y0LWZMJpAVx5DVyydQzvRhR86TNQNkd74P3-LDW7HTE27iPSXjxgwJfoD-5QB03f0bnW7oPNxDN6ayQ99ek_eOBMSnh7rCfm5Wm6ubor19-vbq_m6sFCVU6F5K5UFDU46Ac5qnu9L2WHr2krV0hqjbCuYkLWWHZRKcwnMaahEpVXL4YR8OeiOcfi3wzQ1W58shmB6HHapAQWKc11m8Oy_IM_SACCqveanF-j9sIt9fqOppKqB8VJkiB0gG4eUIrpmjH5r4mPDWbP3rMmeNXvPmqNneeXzUdcka4KLprc-Pe8JwZUogWXu44HziPg8zn8rLmt4AsXMnNc</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>King-Yuen Wong</creator><creator>Wanjun Chen</creator><creator>Qi Zhou</creator><creator>Chen, K.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7QF</scope><scope>7QQ</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20091201</creationdate><title>Zero-Bias Mixer Based on AlGaN/GaN Lateral Field-Effect Diodes for High-Temperature Wireless Sensor and RFID Applications</title><author>King-Yuen Wong ; Wanjun Chen ; Qi Zhou ; Chen, K.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-71b56c373f5f23fc71ffe55debfb8695caa6cb2025975d34671530f7382876b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>AlGaN/GaN</topic><topic>Aluminum gallium nitride</topic><topic>Aluminum gallium nitrides</topic><topic>Applied sciences</topic><topic>Bias</topic><topic>Devices</topic><topic>Diodes</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>field-effect diode (FED)</topic><topic>Gallium nitride</topic><topic>Gallium nitrides</topic><topic>General equipment and techniques</topic><topic>HEMTs</topic><topic>high-temperature wireless sensor</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Intermodulation</topic><topic>Mixers</topic><topic>Modulation</topic><topic>Physics</topic><topic>Radiofrequency identification</topic><topic>Schottky diodes</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Temperature measurement</topic><topic>thermal factors and integration process</topic><topic>Transistors</topic><topic>Wireless sensor networks</topic><topic>zero-bias mixer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>King-Yuen Wong</creatorcontrib><creatorcontrib>Wanjun Chen</creatorcontrib><creatorcontrib>Qi Zhou</creatorcontrib><creatorcontrib>Chen, K.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>King-Yuen Wong</au><au>Wanjun Chen</au><au>Qi Zhou</au><au>Chen, K.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero-Bias Mixer Based on AlGaN/GaN Lateral Field-Effect Diodes for High-Temperature Wireless Sensor and RFID Applications</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>56</volume><issue>12</issue><spage>2888</spage><epage>2894</epage><pages>2888-2894</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this paper, a zero-bias mixer using a lateral field-effect diode fabricated on standard GaN-on-Si AlGaN/GaN high-electron-mobility-transistor wafers is demonstrated. The diode features strong nonlinearity near zero bias, enabled by a threshold-voltage modulation using a fluorine-plasma-treatment technique. The maximum change in conductance was adjusted to ~0 V, leading to optimal conversion loss (CL) of the mixer at zero bias and eliminating the need for any dc supplies. The mixer is characterized from room temperature (RT) to 250degC . At 2.5 GHz and at RT, the CL and third-order intermodulation intercept point are 12.9 dB and 17.64 dBm, respectively. The operation of the proposed diode is modeled by a physical equivalent circuit, with the element values extracted from the measured S-parameters. The voltage-biasing dependence of the CL can be explained by the model. The high-temperature operation of the mixer shows that the proposed mixer can perform well in high-temperature and ultralow-power applications.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2009.2032279</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2009-12, Vol.56 (12), p.2888-2894 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_pascalfrancis_primary_22162430 |
source | IEEE Electronic Library (IEL) |
subjects | AlGaN/GaN Aluminum gallium nitride Aluminum gallium nitrides Applied sciences Bias Devices Diodes Electronics Exact sciences and technology field-effect diode (FED) Gallium nitride Gallium nitrides General equipment and techniques HEMTs high-temperature wireless sensor Instruments, apparatus, components and techniques common to several branches of physics and astronomy Intermodulation Mixers Modulation Physics Radiofrequency identification Schottky diodes Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Sensors (chemical, optical, electrical, movement, gas, etc.) remote sensing Temperature measurement thermal factors and integration process Transistors Wireless sensor networks zero-bias mixer |
title | Zero-Bias Mixer Based on AlGaN/GaN Lateral Field-Effect Diodes for High-Temperature Wireless Sensor and RFID Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero-Bias%20Mixer%20Based%20on%20AlGaN/GaN%20Lateral%20Field-Effect%20Diodes%20for%20High-Temperature%20Wireless%20Sensor%20and%20RFID%20Applications&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=King-Yuen%20Wong&rft.date=2009-12-01&rft.volume=56&rft.issue=12&rft.spage=2888&rft.epage=2894&rft.pages=2888-2894&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2009.2032279&rft_dat=%3Cproquest_RIE%3E1671333281%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856930142&rft_id=info:pmid/&rft_ieee_id=5306159&rfr_iscdi=true |