A residue number system implementation of real orthogonal transforms
Previous work has focused on performing residue computations that are quantized within a dense ring of integers in the real domain. The aims of this paper are to provide an efficient algorithm for the approximation of real input signals, with arbitrarily small error, as elements of a quadratic numbe...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 1998-03, Vol.46 (3), p.563-570 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 570 |
---|---|
container_issue | 3 |
container_start_page | 563 |
container_title | IEEE transactions on signal processing |
container_volume | 46 |
creator | Dimitrov, V.S. Jullien, G.A. Miller, W.C. |
description | Previous work has focused on performing residue computations that are quantized within a dense ring of integers in the real domain. The aims of this paper are to provide an efficient algorithm for the approximation of real input signals, with arbitrarily small error, as elements of a quadratic number ring and to prove residual number system moduli restrictions for simplified multiplication within the ring. The new approximation scheme can be used for implementation of real-valued transforms and their multidimensional generalizations. |
doi_str_mv | 10.1109/78.661325 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_2202069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>661325</ieee_id><sourcerecordid>28560482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-3dee5125d84abce7b1286e63c5e59a41887ee57febd8a89b53a28aa80c3553b83</originalsourceid><addsrcrecordid>eNo9kD1LxEAQhhdR8DwtbK1SiGCRcz-yHykPv-HARsEubDYTjSTZc2dT3L93JcdV88I888C8hFwyumKMlnfarJRigssjsmBlwXJaaHWcMpUil0Z_npIzxB9KWVGUakEe1lkA7JoJsnEaaggZ7jDCkHXDtocBxmhj58fMt4mzfeZD_PZffkwxBjti68OA5-SktT3CxX4uycfT4_v9S755e369X29yJ6iKuWgAJOOyMYWtHeiacaNACSdBlrZgxugE6BbqxlhT1lJYbqw11AkpRW3EktzM3m3wvxNgrIYOHfS9HcFPWHEjFS0MT-DtDLrgEQO01TZ0gw27itHqv6dKm2ruKbHXe6lFZ_s2feU6PBxwTjlVZcKuZqwDgMN27_gDGL1wKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28560482</pqid></control><display><type>article</type><title>A residue number system implementation of real orthogonal transforms</title><source>IEEE Electronic Library (IEL)</source><creator>Dimitrov, V.S. ; Jullien, G.A. ; Miller, W.C.</creator><creatorcontrib>Dimitrov, V.S. ; Jullien, G.A. ; Miller, W.C.</creatorcontrib><description>Previous work has focused on performing residue computations that are quantized within a dense ring of integers in the real domain. The aims of this paper are to provide an efficient algorithm for the approximation of real input signals, with arbitrarily small error, as elements of a quadratic number ring and to prove residual number system moduli restrictions for simplified multiplication within the ring. The new approximation scheme can be used for implementation of real-valued transforms and their multidimensional generalizations.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.661325</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation algorithms ; Computer errors ; Concurrent computing ; Digital signal processing ; Discrete cosine transforms ; Discrete transforms ; Dynamic range ; Exact sciences and technology ; Information, signal and communications theory ; Mathematical methods ; Parallel processing ; Quantization ; Signal processing algorithms ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 1998-03, Vol.46 (3), p.563-570</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-3dee5125d84abce7b1286e63c5e59a41887ee57febd8a89b53a28aa80c3553b83</citedby><cites>FETCH-LOGICAL-c306t-3dee5125d84abce7b1286e63c5e59a41887ee57febd8a89b53a28aa80c3553b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/661325$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/661325$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2202069$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dimitrov, V.S.</creatorcontrib><creatorcontrib>Jullien, G.A.</creatorcontrib><creatorcontrib>Miller, W.C.</creatorcontrib><title>A residue number system implementation of real orthogonal transforms</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Previous work has focused on performing residue computations that are quantized within a dense ring of integers in the real domain. The aims of this paper are to provide an efficient algorithm for the approximation of real input signals, with arbitrarily small error, as elements of a quadratic number ring and to prove residual number system moduli restrictions for simplified multiplication within the ring. The new approximation scheme can be used for implementation of real-valued transforms and their multidimensional generalizations.</description><subject>Applied sciences</subject><subject>Approximation algorithms</subject><subject>Computer errors</subject><subject>Concurrent computing</subject><subject>Digital signal processing</subject><subject>Discrete cosine transforms</subject><subject>Discrete transforms</subject><subject>Dynamic range</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Mathematical methods</subject><subject>Parallel processing</subject><subject>Quantization</subject><subject>Signal processing algorithms</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1LxEAQhhdR8DwtbK1SiGCRcz-yHykPv-HARsEubDYTjSTZc2dT3L93JcdV88I888C8hFwyumKMlnfarJRigssjsmBlwXJaaHWcMpUil0Z_npIzxB9KWVGUakEe1lkA7JoJsnEaaggZ7jDCkHXDtocBxmhj58fMt4mzfeZD_PZffkwxBjti68OA5-SktT3CxX4uycfT4_v9S755e369X29yJ6iKuWgAJOOyMYWtHeiacaNACSdBlrZgxugE6BbqxlhT1lJYbqw11AkpRW3EktzM3m3wvxNgrIYOHfS9HcFPWHEjFS0MT-DtDLrgEQO01TZ0gw27itHqv6dKm2ruKbHXe6lFZ_s2feU6PBxwTjlVZcKuZqwDgMN27_gDGL1wKQ</recordid><startdate>19980301</startdate><enddate>19980301</enddate><creator>Dimitrov, V.S.</creator><creator>Jullien, G.A.</creator><creator>Miller, W.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980301</creationdate><title>A residue number system implementation of real orthogonal transforms</title><author>Dimitrov, V.S. ; Jullien, G.A. ; Miller, W.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-3dee5125d84abce7b1286e63c5e59a41887ee57febd8a89b53a28aa80c3553b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Approximation algorithms</topic><topic>Computer errors</topic><topic>Concurrent computing</topic><topic>Digital signal processing</topic><topic>Discrete cosine transforms</topic><topic>Discrete transforms</topic><topic>Dynamic range</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Mathematical methods</topic><topic>Parallel processing</topic><topic>Quantization</topic><topic>Signal processing algorithms</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimitrov, V.S.</creatorcontrib><creatorcontrib>Jullien, G.A.</creatorcontrib><creatorcontrib>Miller, W.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dimitrov, V.S.</au><au>Jullien, G.A.</au><au>Miller, W.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A residue number system implementation of real orthogonal transforms</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1998-03-01</date><risdate>1998</risdate><volume>46</volume><issue>3</issue><spage>563</spage><epage>570</epage><pages>563-570</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Previous work has focused on performing residue computations that are quantized within a dense ring of integers in the real domain. The aims of this paper are to provide an efficient algorithm for the approximation of real input signals, with arbitrarily small error, as elements of a quadratic number ring and to prove residual number system moduli restrictions for simplified multiplication within the ring. The new approximation scheme can be used for implementation of real-valued transforms and their multidimensional generalizations.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.661325</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 1998-03, Vol.46 (3), p.563-570 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_pascalfrancis_primary_2202069 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Approximation algorithms Computer errors Concurrent computing Digital signal processing Discrete cosine transforms Discrete transforms Dynamic range Exact sciences and technology Information, signal and communications theory Mathematical methods Parallel processing Quantization Signal processing algorithms Telecommunications and information theory |
title | A residue number system implementation of real orthogonal transforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A41%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20residue%20number%20system%20implementation%20of%20real%20orthogonal%20transforms&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Dimitrov,%20V.S.&rft.date=1998-03-01&rft.volume=46&rft.issue=3&rft.spage=563&rft.epage=570&rft.pages=563-570&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.661325&rft_dat=%3Cproquest_RIE%3E28560482%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28560482&rft_id=info:pmid/&rft_ieee_id=661325&rfr_iscdi=true |