A residue number system implementation of real orthogonal transforms

Previous work has focused on performing residue computations that are quantized within a dense ring of integers in the real domain. The aims of this paper are to provide an efficient algorithm for the approximation of real input signals, with arbitrarily small error, as elements of a quadratic numbe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 1998-03, Vol.46 (3), p.563-570
Hauptverfasser: Dimitrov, V.S., Jullien, G.A., Miller, W.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 570
container_issue 3
container_start_page 563
container_title IEEE transactions on signal processing
container_volume 46
creator Dimitrov, V.S.
Jullien, G.A.
Miller, W.C.
description Previous work has focused on performing residue computations that are quantized within a dense ring of integers in the real domain. The aims of this paper are to provide an efficient algorithm for the approximation of real input signals, with arbitrarily small error, as elements of a quadratic number ring and to prove residual number system moduli restrictions for simplified multiplication within the ring. The new approximation scheme can be used for implementation of real-valued transforms and their multidimensional generalizations.
doi_str_mv 10.1109/78.661325
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_2202069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>661325</ieee_id><sourcerecordid>28560482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-3dee5125d84abce7b1286e63c5e59a41887ee57febd8a89b53a28aa80c3553b83</originalsourceid><addsrcrecordid>eNo9kD1LxEAQhhdR8DwtbK1SiGCRcz-yHykPv-HARsEubDYTjSTZc2dT3L93JcdV88I888C8hFwyumKMlnfarJRigssjsmBlwXJaaHWcMpUil0Z_npIzxB9KWVGUakEe1lkA7JoJsnEaaggZ7jDCkHXDtocBxmhj58fMt4mzfeZD_PZffkwxBjti68OA5-SktT3CxX4uycfT4_v9S755e369X29yJ6iKuWgAJOOyMYWtHeiacaNACSdBlrZgxugE6BbqxlhT1lJYbqw11AkpRW3EktzM3m3wvxNgrIYOHfS9HcFPWHEjFS0MT-DtDLrgEQO01TZ0gw27itHqv6dKm2ruKbHXe6lFZ_s2feU6PBxwTjlVZcKuZqwDgMN27_gDGL1wKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28560482</pqid></control><display><type>article</type><title>A residue number system implementation of real orthogonal transforms</title><source>IEEE Electronic Library (IEL)</source><creator>Dimitrov, V.S. ; Jullien, G.A. ; Miller, W.C.</creator><creatorcontrib>Dimitrov, V.S. ; Jullien, G.A. ; Miller, W.C.</creatorcontrib><description>Previous work has focused on performing residue computations that are quantized within a dense ring of integers in the real domain. The aims of this paper are to provide an efficient algorithm for the approximation of real input signals, with arbitrarily small error, as elements of a quadratic number ring and to prove residual number system moduli restrictions for simplified multiplication within the ring. The new approximation scheme can be used for implementation of real-valued transforms and their multidimensional generalizations.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.661325</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation algorithms ; Computer errors ; Concurrent computing ; Digital signal processing ; Discrete cosine transforms ; Discrete transforms ; Dynamic range ; Exact sciences and technology ; Information, signal and communications theory ; Mathematical methods ; Parallel processing ; Quantization ; Signal processing algorithms ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 1998-03, Vol.46 (3), p.563-570</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-3dee5125d84abce7b1286e63c5e59a41887ee57febd8a89b53a28aa80c3553b83</citedby><cites>FETCH-LOGICAL-c306t-3dee5125d84abce7b1286e63c5e59a41887ee57febd8a89b53a28aa80c3553b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/661325$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/661325$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2202069$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dimitrov, V.S.</creatorcontrib><creatorcontrib>Jullien, G.A.</creatorcontrib><creatorcontrib>Miller, W.C.</creatorcontrib><title>A residue number system implementation of real orthogonal transforms</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Previous work has focused on performing residue computations that are quantized within a dense ring of integers in the real domain. The aims of this paper are to provide an efficient algorithm for the approximation of real input signals, with arbitrarily small error, as elements of a quadratic number ring and to prove residual number system moduli restrictions for simplified multiplication within the ring. The new approximation scheme can be used for implementation of real-valued transforms and their multidimensional generalizations.</description><subject>Applied sciences</subject><subject>Approximation algorithms</subject><subject>Computer errors</subject><subject>Concurrent computing</subject><subject>Digital signal processing</subject><subject>Discrete cosine transforms</subject><subject>Discrete transforms</subject><subject>Dynamic range</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Mathematical methods</subject><subject>Parallel processing</subject><subject>Quantization</subject><subject>Signal processing algorithms</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1LxEAQhhdR8DwtbK1SiGCRcz-yHykPv-HARsEubDYTjSTZc2dT3L93JcdV88I888C8hFwyumKMlnfarJRigssjsmBlwXJaaHWcMpUil0Z_npIzxB9KWVGUakEe1lkA7JoJsnEaaggZ7jDCkHXDtocBxmhj58fMt4mzfeZD_PZffkwxBjti68OA5-SktT3CxX4uycfT4_v9S755e369X29yJ6iKuWgAJOOyMYWtHeiacaNACSdBlrZgxugE6BbqxlhT1lJYbqw11AkpRW3EktzM3m3wvxNgrIYOHfS9HcFPWHEjFS0MT-DtDLrgEQO01TZ0gw27itHqv6dKm2ruKbHXe6lFZ_s2feU6PBxwTjlVZcKuZqwDgMN27_gDGL1wKQ</recordid><startdate>19980301</startdate><enddate>19980301</enddate><creator>Dimitrov, V.S.</creator><creator>Jullien, G.A.</creator><creator>Miller, W.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980301</creationdate><title>A residue number system implementation of real orthogonal transforms</title><author>Dimitrov, V.S. ; Jullien, G.A. ; Miller, W.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-3dee5125d84abce7b1286e63c5e59a41887ee57febd8a89b53a28aa80c3553b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Approximation algorithms</topic><topic>Computer errors</topic><topic>Concurrent computing</topic><topic>Digital signal processing</topic><topic>Discrete cosine transforms</topic><topic>Discrete transforms</topic><topic>Dynamic range</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Mathematical methods</topic><topic>Parallel processing</topic><topic>Quantization</topic><topic>Signal processing algorithms</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimitrov, V.S.</creatorcontrib><creatorcontrib>Jullien, G.A.</creatorcontrib><creatorcontrib>Miller, W.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dimitrov, V.S.</au><au>Jullien, G.A.</au><au>Miller, W.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A residue number system implementation of real orthogonal transforms</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1998-03-01</date><risdate>1998</risdate><volume>46</volume><issue>3</issue><spage>563</spage><epage>570</epage><pages>563-570</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Previous work has focused on performing residue computations that are quantized within a dense ring of integers in the real domain. The aims of this paper are to provide an efficient algorithm for the approximation of real input signals, with arbitrarily small error, as elements of a quadratic number ring and to prove residual number system moduli restrictions for simplified multiplication within the ring. The new approximation scheme can be used for implementation of real-valued transforms and their multidimensional generalizations.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.661325</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 1998-03, Vol.46 (3), p.563-570
issn 1053-587X
1941-0476
language eng
recordid cdi_pascalfrancis_primary_2202069
source IEEE Electronic Library (IEL)
subjects Applied sciences
Approximation algorithms
Computer errors
Concurrent computing
Digital signal processing
Discrete cosine transforms
Discrete transforms
Dynamic range
Exact sciences and technology
Information, signal and communications theory
Mathematical methods
Parallel processing
Quantization
Signal processing algorithms
Telecommunications and information theory
title A residue number system implementation of real orthogonal transforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A41%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20residue%20number%20system%20implementation%20of%20real%20orthogonal%20transforms&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Dimitrov,%20V.S.&rft.date=1998-03-01&rft.volume=46&rft.issue=3&rft.spage=563&rft.epage=570&rft.pages=563-570&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.661325&rft_dat=%3Cproquest_RIE%3E28560482%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28560482&rft_id=info:pmid/&rft_ieee_id=661325&rfr_iscdi=true