Quantum cohomology and the k-Schur basis
We prove that structure constants related to Hecke algebras at roots of unity are special cases of k-Littlewood-Richardson coefficients associated to a product of k-Schur functions. As a consequence, both the 3-point Gromov-Witten invariants appearing in the quantum cohomology of the Grassmannian, a...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2008-04, Vol.360 (4), p.2021-2040 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2040 |
---|---|
container_issue | 4 |
container_start_page | 2021 |
container_title | Transactions of the American Mathematical Society |
container_volume | 360 |
creator | Lapointe, Luc Morse, Jennifer |
description | We prove that structure constants related to Hecke algebras at roots of unity are special cases of k-Littlewood-Richardson coefficients associated to a product of k-Schur functions. As a consequence, both the 3-point Gromov-Witten invariants appearing in the quantum cohomology of the Grassmannian, and the fusion coefficients for the WZW conformal field theories associated to \widehat{su}(\ell) are shown to be k-Littlewood-Richardson coefficients. From this, Mark Shimozono conjectured that the k-Schur functions form the Schubert basis for the homology of the loop Grassmannian, whereas k-Schur coproducts correspond to the integral cohomology of the loop Grassmannian. We introduce dual k-Schur functions defined on weights of k-tableaux that, given Shimozono's conjecture, form the Schubert basis for the cohomology of the loop Grassmannian. We derive several properties of these functions that extend those of skew Schur functions. |
doi_str_mv | 10.1090/S0002-9947-07-04287-0 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_21893067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20161956</jstor_id><sourcerecordid>20161956</sourcerecordid><originalsourceid>FETCH-LOGICAL-a937-147cd7e972b8b0f2b656d9cadeb2e907d63073398911c9391be0fd75559637653</originalsourceid><addsrcrecordid>eNpFkM1Lw0AQxRdRsFb_hEIugpfV2d3sxxylaBUKIu192WwSk5qPkk0O_e9NjFh4zDC8N-_wI2TF4JEBwtMOADhFjDWFUTE347wgCwbGUGUkXJLFf-Sa3IRwGE-IjVqQh8_BNf1QR74t2rqt2q9T5Jo06oss-qY7XwxdlLhQhltylbsqZHd_e0n2ry_79Rvdfmze189b6lBoymLtU52h5olJIOeJkipF79Is4RmCTpUALQQaZMyjQJZkkKdaSolKaCXFktzPtUcXvKvyzjW-DPbYlbXrTpYzgwKUHnOrOXcIfdudfWCKoVSjD7Pv6vM3AzsBs7_A7ETDwqgJmAXxA5C5Wlk</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum cohomology and the k-Schur basis</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lapointe, Luc ; Morse, Jennifer</creator><creatorcontrib>Lapointe, Luc ; Morse, Jennifer</creatorcontrib><description>We prove that structure constants related to Hecke algebras at roots of unity are special cases of k-Littlewood-Richardson coefficients associated to a product of k-Schur functions. As a consequence, both the 3-point Gromov-Witten invariants appearing in the quantum cohomology of the Grassmannian, and the fusion coefficients for the WZW conformal field theories associated to \widehat{su}(\ell) are shown to be k-Littlewood-Richardson coefficients. From this, Mark Shimozono conjectured that the k-Schur functions form the Schubert basis for the homology of the loop Grassmannian, whereas k-Schur coproducts correspond to the integral cohomology of the loop Grassmannian. We introduce dual k-Schur functions defined on weights of k-tableaux that, given Shimozono's conjecture, form the Schubert basis for the cohomology of the loop Grassmannian. We derive several properties of these functions that extend those of skew Schur functions.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/S0002-9947-07-04287-0</identifier><identifier>CODEN: TAMTAM</identifier><language>eng</language><publisher>Providence, RI: American Mathematical Society</publisher><subject>Algebra ; Coefficients ; Constant coefficients ; Exact sciences and technology ; Group theory ; Group theory and generalizations ; Mathematical functions ; Mathematics ; Multivariate analysis ; Polynomials ; Probability and statistics ; Property partitioning ; Rectangles ; Sciences and techniques of general use ; Statistics ; Symmetry ; Tableaux</subject><ispartof>Transactions of the American Mathematical Society, 2008-04, Vol.360 (4), p.2021-2040</ispartof><rights>Copyright 2007, American Mathematical Society</rights><rights>Copyright 2008 American Mathematical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/journal-getitem?pii=S0002-9947-07-04287-0http://www.ams.org/journal-getitem?pii=S0002-9947-07-04287-0.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/journal-getitem?pii=S0002-9947-07-04287-0$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,780,784,803,832,23322,23326,27922,27923,58015,58019,58248,58252,77606,77608,77616,77618</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21893067$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lapointe, Luc</creatorcontrib><creatorcontrib>Morse, Jennifer</creatorcontrib><title>Quantum cohomology and the k-Schur basis</title><title>Transactions of the American Mathematical Society</title><description>We prove that structure constants related to Hecke algebras at roots of unity are special cases of k-Littlewood-Richardson coefficients associated to a product of k-Schur functions. As a consequence, both the 3-point Gromov-Witten invariants appearing in the quantum cohomology of the Grassmannian, and the fusion coefficients for the WZW conformal field theories associated to \widehat{su}(\ell) are shown to be k-Littlewood-Richardson coefficients. From this, Mark Shimozono conjectured that the k-Schur functions form the Schubert basis for the homology of the loop Grassmannian, whereas k-Schur coproducts correspond to the integral cohomology of the loop Grassmannian. We introduce dual k-Schur functions defined on weights of k-tableaux that, given Shimozono's conjecture, form the Schubert basis for the cohomology of the loop Grassmannian. We derive several properties of these functions that extend those of skew Schur functions.</description><subject>Algebra</subject><subject>Coefficients</subject><subject>Constant coefficients</subject><subject>Exact sciences and technology</subject><subject>Group theory</subject><subject>Group theory and generalizations</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Polynomials</subject><subject>Probability and statistics</subject><subject>Property partitioning</subject><subject>Rectangles</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Symmetry</subject><subject>Tableaux</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpFkM1Lw0AQxRdRsFb_hEIugpfV2d3sxxylaBUKIu192WwSk5qPkk0O_e9NjFh4zDC8N-_wI2TF4JEBwtMOADhFjDWFUTE347wgCwbGUGUkXJLFf-Sa3IRwGE-IjVqQh8_BNf1QR74t2rqt2q9T5Jo06oss-qY7XwxdlLhQhltylbsqZHd_e0n2ry_79Rvdfmze189b6lBoymLtU52h5olJIOeJkipF79Is4RmCTpUALQQaZMyjQJZkkKdaSolKaCXFktzPtUcXvKvyzjW-DPbYlbXrTpYzgwKUHnOrOXcIfdudfWCKoVSjD7Pv6vM3AzsBs7_A7ETDwqgJmAXxA5C5Wlk</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Lapointe, Luc</creator><creator>Morse, Jennifer</creator><general>American Mathematical Society</general><scope>IQODW</scope></search><sort><creationdate>20080401</creationdate><title>Quantum cohomology and the k-Schur basis</title><author>Lapointe, Luc ; Morse, Jennifer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a937-147cd7e972b8b0f2b656d9cadeb2e907d63073398911c9391be0fd75559637653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Coefficients</topic><topic>Constant coefficients</topic><topic>Exact sciences and technology</topic><topic>Group theory</topic><topic>Group theory and generalizations</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Polynomials</topic><topic>Probability and statistics</topic><topic>Property partitioning</topic><topic>Rectangles</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Symmetry</topic><topic>Tableaux</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lapointe, Luc</creatorcontrib><creatorcontrib>Morse, Jennifer</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lapointe, Luc</au><au>Morse, Jennifer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum cohomology and the k-Schur basis</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>360</volume><issue>4</issue><spage>2021</spage><epage>2040</epage><pages>2021-2040</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><coden>TAMTAM</coden><abstract>We prove that structure constants related to Hecke algebras at roots of unity are special cases of k-Littlewood-Richardson coefficients associated to a product of k-Schur functions. As a consequence, both the 3-point Gromov-Witten invariants appearing in the quantum cohomology of the Grassmannian, and the fusion coefficients for the WZW conformal field theories associated to \widehat{su}(\ell) are shown to be k-Littlewood-Richardson coefficients. From this, Mark Shimozono conjectured that the k-Schur functions form the Schubert basis for the homology of the loop Grassmannian, whereas k-Schur coproducts correspond to the integral cohomology of the loop Grassmannian. We introduce dual k-Schur functions defined on weights of k-tableaux that, given Shimozono's conjecture, form the Schubert basis for the cohomology of the loop Grassmannian. We derive several properties of these functions that extend those of skew Schur functions.</abstract><cop>Providence, RI</cop><pub>American Mathematical Society</pub><doi>10.1090/S0002-9947-07-04287-0</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2008-04, Vol.360 (4), p.2021-2040 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_pascalfrancis_primary_21893067 |
source | American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals |
subjects | Algebra Coefficients Constant coefficients Exact sciences and technology Group theory Group theory and generalizations Mathematical functions Mathematics Multivariate analysis Polynomials Probability and statistics Property partitioning Rectangles Sciences and techniques of general use Statistics Symmetry Tableaux |
title | Quantum cohomology and the k-Schur basis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20cohomology%20and%20the%20k-Schur%20basis&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Lapointe,%20Luc&rft.date=2008-04-01&rft.volume=360&rft.issue=4&rft.spage=2021&rft.epage=2040&rft.pages=2021-2040&rft.issn=0002-9947&rft.eissn=1088-6850&rft.coden=TAMTAM&rft_id=info:doi/10.1090/S0002-9947-07-04287-0&rft_dat=%3Cjstor_pasca%3E20161956%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=20161956&rfr_iscdi=true |