Quantum cohomology and the k-Schur basis

We prove that structure constants related to Hecke algebras at roots of unity are special cases of k-Littlewood-Richardson coefficients associated to a product of k-Schur functions. As a consequence, both the 3-point Gromov-Witten invariants appearing in the quantum cohomology of the Grassmannian, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2008-04, Vol.360 (4), p.2021-2040
Hauptverfasser: Lapointe, Luc, Morse, Jennifer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2040
container_issue 4
container_start_page 2021
container_title Transactions of the American Mathematical Society
container_volume 360
creator Lapointe, Luc
Morse, Jennifer
description We prove that structure constants related to Hecke algebras at roots of unity are special cases of k-Littlewood-Richardson coefficients associated to a product of k-Schur functions. As a consequence, both the 3-point Gromov-Witten invariants appearing in the quantum cohomology of the Grassmannian, and the fusion coefficients for the WZW conformal field theories associated to \widehat{su}(\ell) are shown to be k-Littlewood-Richardson coefficients. From this, Mark Shimozono conjectured that the k-Schur functions form the Schubert basis for the homology of the loop Grassmannian, whereas k-Schur coproducts correspond to the integral cohomology of the loop Grassmannian. We introduce dual k-Schur functions defined on weights of k-tableaux that, given Shimozono's conjecture, form the Schubert basis for the cohomology of the loop Grassmannian. We derive several properties of these functions that extend those of skew Schur functions.
doi_str_mv 10.1090/S0002-9947-07-04287-0
format Article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_21893067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20161956</jstor_id><sourcerecordid>20161956</sourcerecordid><originalsourceid>FETCH-LOGICAL-a937-147cd7e972b8b0f2b656d9cadeb2e907d63073398911c9391be0fd75559637653</originalsourceid><addsrcrecordid>eNpFkM1Lw0AQxRdRsFb_hEIugpfV2d3sxxylaBUKIu192WwSk5qPkk0O_e9NjFh4zDC8N-_wI2TF4JEBwtMOADhFjDWFUTE347wgCwbGUGUkXJLFf-Sa3IRwGE-IjVqQh8_BNf1QR74t2rqt2q9T5Jo06oss-qY7XwxdlLhQhltylbsqZHd_e0n2ry_79Rvdfmze189b6lBoymLtU52h5olJIOeJkipF79Is4RmCTpUALQQaZMyjQJZkkKdaSolKaCXFktzPtUcXvKvyzjW-DPbYlbXrTpYzgwKUHnOrOXcIfdudfWCKoVSjD7Pv6vM3AzsBs7_A7ETDwqgJmAXxA5C5Wlk</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum cohomology and the k-Schur basis</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lapointe, Luc ; Morse, Jennifer</creator><creatorcontrib>Lapointe, Luc ; Morse, Jennifer</creatorcontrib><description>We prove that structure constants related to Hecke algebras at roots of unity are special cases of k-Littlewood-Richardson coefficients associated to a product of k-Schur functions. As a consequence, both the 3-point Gromov-Witten invariants appearing in the quantum cohomology of the Grassmannian, and the fusion coefficients for the WZW conformal field theories associated to \widehat{su}(\ell) are shown to be k-Littlewood-Richardson coefficients. From this, Mark Shimozono conjectured that the k-Schur functions form the Schubert basis for the homology of the loop Grassmannian, whereas k-Schur coproducts correspond to the integral cohomology of the loop Grassmannian. We introduce dual k-Schur functions defined on weights of k-tableaux that, given Shimozono's conjecture, form the Schubert basis for the cohomology of the loop Grassmannian. We derive several properties of these functions that extend those of skew Schur functions.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/S0002-9947-07-04287-0</identifier><identifier>CODEN: TAMTAM</identifier><language>eng</language><publisher>Providence, RI: American Mathematical Society</publisher><subject>Algebra ; Coefficients ; Constant coefficients ; Exact sciences and technology ; Group theory ; Group theory and generalizations ; Mathematical functions ; Mathematics ; Multivariate analysis ; Polynomials ; Probability and statistics ; Property partitioning ; Rectangles ; Sciences and techniques of general use ; Statistics ; Symmetry ; Tableaux</subject><ispartof>Transactions of the American Mathematical Society, 2008-04, Vol.360 (4), p.2021-2040</ispartof><rights>Copyright 2007, American Mathematical Society</rights><rights>Copyright 2008 American Mathematical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/journal-getitem?pii=S0002-9947-07-04287-0http://www.ams.org/journal-getitem?pii=S0002-9947-07-04287-0.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/journal-getitem?pii=S0002-9947-07-04287-0$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,780,784,803,832,23322,23326,27922,27923,58015,58019,58248,58252,77606,77608,77616,77618</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21893067$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lapointe, Luc</creatorcontrib><creatorcontrib>Morse, Jennifer</creatorcontrib><title>Quantum cohomology and the k-Schur basis</title><title>Transactions of the American Mathematical Society</title><description>We prove that structure constants related to Hecke algebras at roots of unity are special cases of k-Littlewood-Richardson coefficients associated to a product of k-Schur functions. As a consequence, both the 3-point Gromov-Witten invariants appearing in the quantum cohomology of the Grassmannian, and the fusion coefficients for the WZW conformal field theories associated to \widehat{su}(\ell) are shown to be k-Littlewood-Richardson coefficients. From this, Mark Shimozono conjectured that the k-Schur functions form the Schubert basis for the homology of the loop Grassmannian, whereas k-Schur coproducts correspond to the integral cohomology of the loop Grassmannian. We introduce dual k-Schur functions defined on weights of k-tableaux that, given Shimozono's conjecture, form the Schubert basis for the cohomology of the loop Grassmannian. We derive several properties of these functions that extend those of skew Schur functions.</description><subject>Algebra</subject><subject>Coefficients</subject><subject>Constant coefficients</subject><subject>Exact sciences and technology</subject><subject>Group theory</subject><subject>Group theory and generalizations</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Polynomials</subject><subject>Probability and statistics</subject><subject>Property partitioning</subject><subject>Rectangles</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Symmetry</subject><subject>Tableaux</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpFkM1Lw0AQxRdRsFb_hEIugpfV2d3sxxylaBUKIu192WwSk5qPkk0O_e9NjFh4zDC8N-_wI2TF4JEBwtMOADhFjDWFUTE347wgCwbGUGUkXJLFf-Sa3IRwGE-IjVqQh8_BNf1QR74t2rqt2q9T5Jo06oss-qY7XwxdlLhQhltylbsqZHd_e0n2ry_79Rvdfmze189b6lBoymLtU52h5olJIOeJkipF79Is4RmCTpUALQQaZMyjQJZkkKdaSolKaCXFktzPtUcXvKvyzjW-DPbYlbXrTpYzgwKUHnOrOXcIfdudfWCKoVSjD7Pv6vM3AzsBs7_A7ETDwqgJmAXxA5C5Wlk</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Lapointe, Luc</creator><creator>Morse, Jennifer</creator><general>American Mathematical Society</general><scope>IQODW</scope></search><sort><creationdate>20080401</creationdate><title>Quantum cohomology and the k-Schur basis</title><author>Lapointe, Luc ; Morse, Jennifer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a937-147cd7e972b8b0f2b656d9cadeb2e907d63073398911c9391be0fd75559637653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Coefficients</topic><topic>Constant coefficients</topic><topic>Exact sciences and technology</topic><topic>Group theory</topic><topic>Group theory and generalizations</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Polynomials</topic><topic>Probability and statistics</topic><topic>Property partitioning</topic><topic>Rectangles</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Symmetry</topic><topic>Tableaux</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lapointe, Luc</creatorcontrib><creatorcontrib>Morse, Jennifer</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lapointe, Luc</au><au>Morse, Jennifer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum cohomology and the k-Schur basis</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>360</volume><issue>4</issue><spage>2021</spage><epage>2040</epage><pages>2021-2040</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><coden>TAMTAM</coden><abstract>We prove that structure constants related to Hecke algebras at roots of unity are special cases of k-Littlewood-Richardson coefficients associated to a product of k-Schur functions. As a consequence, both the 3-point Gromov-Witten invariants appearing in the quantum cohomology of the Grassmannian, and the fusion coefficients for the WZW conformal field theories associated to \widehat{su}(\ell) are shown to be k-Littlewood-Richardson coefficients. From this, Mark Shimozono conjectured that the k-Schur functions form the Schubert basis for the homology of the loop Grassmannian, whereas k-Schur coproducts correspond to the integral cohomology of the loop Grassmannian. We introduce dual k-Schur functions defined on weights of k-tableaux that, given Shimozono's conjecture, form the Schubert basis for the cohomology of the loop Grassmannian. We derive several properties of these functions that extend those of skew Schur functions.</abstract><cop>Providence, RI</cop><pub>American Mathematical Society</pub><doi>10.1090/S0002-9947-07-04287-0</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2008-04, Vol.360 (4), p.2021-2040
issn 0002-9947
1088-6850
language eng
recordid cdi_pascalfrancis_primary_21893067
source American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals
subjects Algebra
Coefficients
Constant coefficients
Exact sciences and technology
Group theory
Group theory and generalizations
Mathematical functions
Mathematics
Multivariate analysis
Polynomials
Probability and statistics
Property partitioning
Rectangles
Sciences and techniques of general use
Statistics
Symmetry
Tableaux
title Quantum cohomology and the k-Schur basis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20cohomology%20and%20the%20k-Schur%20basis&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Lapointe,%20Luc&rft.date=2008-04-01&rft.volume=360&rft.issue=4&rft.spage=2021&rft.epage=2040&rft.pages=2021-2040&rft.issn=0002-9947&rft.eissn=1088-6850&rft.coden=TAMTAM&rft_id=info:doi/10.1090/S0002-9947-07-04287-0&rft_dat=%3Cjstor_pasca%3E20161956%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=20161956&rfr_iscdi=true