Unsupervised Change Detection From Multichannel SAR Data by Markovian Data Fusion

In applications related to environmental monitoring and disaster management, multichannel synthetic aperture radar (SAR) data present a great potential, owing both to their insensitivity to atmospheric and Sun-illumination conditions and to the improved discrimination capability they may provide as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2009-07, Vol.47 (7), p.2114-2128
Hauptverfasser: Moser, G., Serpico, S.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2128
container_issue 7
container_start_page 2114
container_title IEEE transactions on geoscience and remote sensing
container_volume 47
creator Moser, G.
Serpico, S.B.
description In applications related to environmental monitoring and disaster management, multichannel synthetic aperture radar (SAR) data present a great potential, owing both to their insensitivity to atmospheric and Sun-illumination conditions and to the improved discrimination capability they may provide as compared with single-channel SAR. However, exploiting this potential requires accurate and automatic techniques to generate change maps from (multichannel) SAR images acquired over the same geographic region in different polarizations or at different frequencies at different times. In this paper, a contextual unsupervised change-detection technique (based on a data-fusion approach) is proposed for two-date multichannel SAR images. Each SAR channel is modeled as a distinct information source, and a Markovian approach to data fusion is adopted. A Markov random field model is introduced that combines together the information conveyed by each SAR channel and the spatial contextual information concerning the correlation among neighboring pixels and formulated by using ldquoenergy functions.rdquo In order to address the task of the estimation of the model parameters, the expectation-maximization algorithm is combined with the recently proposed ldquomethod of log-cumulants.rdquo The proposed technique was experimentally validated with semisimulated multipolarization and multifrequency data and with real SIR-C/XSAR images.
doi_str_mv 10.1109/TGRS.2009.2012407
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_21835056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4895322</ieee_id><sourcerecordid>2295158181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-6b73323d7ca0c9af403d9f9d955250590688097030827399bd833b33eabb83e03</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxa2qSN0u_QAVl6hSgUvo2GPH9hEtLCCBUPlzthzHoaHZZLETJL49jnbFgQNcbMnze-M38wj5SeGIUtB_7s5ubo8YgE4HZRzkFzKjQqgcCs6_khlQXeRMafaNfI_xEYByQeWM_L3v4rj24bmJvsoW_2z34LMTP3g3NH2XLUO_yq7GdmhcKnW-zW6Pb7ITO9isfMmubPjfPze227wsx5g0u2Sntm30P7b3nNwvT-8W5_nl9dnF4vgyd5zrIS9Kiciwks6C07bmgJWudaWFYAKEhkIp0BIQFJOodVkpxBLR27JU6AHn5GDTdx36p9HHwaya6Hzb2s73YzSqkJILriZy_0MSC8T05ecgS5vllKoEHn4IUpmsKyl4kdBf79DHfgxd2oxRQiYA0lxzQjeQC32MwddmHZqVDS-GgpnyNVO-ZsrXbPNNmt_bxjY629bBdq6Jb0KWbKahJgN7G67x3r-VudICGcNXK8uqeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857463083</pqid></control><display><type>article</type><title>Unsupervised Change Detection From Multichannel SAR Data by Markovian Data Fusion</title><source>IEEE Electronic Library (IEL)</source><creator>Moser, G. ; Serpico, S.B.</creator><creatorcontrib>Moser, G. ; Serpico, S.B.</creatorcontrib><description>In applications related to environmental monitoring and disaster management, multichannel synthetic aperture radar (SAR) data present a great potential, owing both to their insensitivity to atmospheric and Sun-illumination conditions and to the improved discrimination capability they may provide as compared with single-channel SAR. However, exploiting this potential requires accurate and automatic techniques to generate change maps from (multichannel) SAR images acquired over the same geographic region in different polarizations or at different frequencies at different times. In this paper, a contextual unsupervised change-detection technique (based on a data-fusion approach) is proposed for two-date multichannel SAR images. Each SAR channel is modeled as a distinct information source, and a Markovian approach to data fusion is adopted. A Markov random field model is introduced that combines together the information conveyed by each SAR channel and the spatial contextual information concerning the correlation among neighboring pixels and formulated by using ldquoenergy functions.rdquo In order to address the task of the estimation of the model parameters, the expectation-maximization algorithm is combined with the recently proposed ldquomethod of log-cumulants.rdquo The proposed technique was experimentally validated with semisimulated multipolarization and multifrequency data and with real SIR-C/XSAR images.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2009.2012407</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive optics ; Algorithms ; Applied geophysics ; Biomedical optical imaging ; Change detection ; Channels ; Condition monitoring ; Context modeling ; Data fusion ; Data integration ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; expectation-maximization (EM) ; Frequency ; Internal geophysics ; Markov random fields ; Markov random fields (MRFs) ; Multichannel ; multichannel SAR ; Pixel ; Polarization ; Radar detection ; Studies ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2009-07, Vol.47 (7), p.2114-2128</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-6b73323d7ca0c9af403d9f9d955250590688097030827399bd833b33eabb83e03</citedby><cites>FETCH-LOGICAL-c449t-6b73323d7ca0c9af403d9f9d955250590688097030827399bd833b33eabb83e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4895322$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4895322$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21835056$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Moser, G.</creatorcontrib><creatorcontrib>Serpico, S.B.</creatorcontrib><title>Unsupervised Change Detection From Multichannel SAR Data by Markovian Data Fusion</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In applications related to environmental monitoring and disaster management, multichannel synthetic aperture radar (SAR) data present a great potential, owing both to their insensitivity to atmospheric and Sun-illumination conditions and to the improved discrimination capability they may provide as compared with single-channel SAR. However, exploiting this potential requires accurate and automatic techniques to generate change maps from (multichannel) SAR images acquired over the same geographic region in different polarizations or at different frequencies at different times. In this paper, a contextual unsupervised change-detection technique (based on a data-fusion approach) is proposed for two-date multichannel SAR images. Each SAR channel is modeled as a distinct information source, and a Markovian approach to data fusion is adopted. A Markov random field model is introduced that combines together the information conveyed by each SAR channel and the spatial contextual information concerning the correlation among neighboring pixels and formulated by using ldquoenergy functions.rdquo In order to address the task of the estimation of the model parameters, the expectation-maximization algorithm is combined with the recently proposed ldquomethod of log-cumulants.rdquo The proposed technique was experimentally validated with semisimulated multipolarization and multifrequency data and with real SIR-C/XSAR images.</description><subject>Adaptive optics</subject><subject>Algorithms</subject><subject>Applied geophysics</subject><subject>Biomedical optical imaging</subject><subject>Change detection</subject><subject>Channels</subject><subject>Condition monitoring</subject><subject>Context modeling</subject><subject>Data fusion</subject><subject>Data integration</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>expectation-maximization (EM)</subject><subject>Frequency</subject><subject>Internal geophysics</subject><subject>Markov random fields</subject><subject>Markov random fields (MRFs)</subject><subject>Multichannel</subject><subject>multichannel SAR</subject><subject>Pixel</subject><subject>Polarization</subject><subject>Radar detection</subject><subject>Studies</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Unmanned aerial vehicles</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU9P3DAQxa2qSN0u_QAVl6hSgUvo2GPH9hEtLCCBUPlzthzHoaHZZLETJL49jnbFgQNcbMnze-M38wj5SeGIUtB_7s5ubo8YgE4HZRzkFzKjQqgcCs6_khlQXeRMafaNfI_xEYByQeWM_L3v4rj24bmJvsoW_2z34LMTP3g3NH2XLUO_yq7GdmhcKnW-zW6Pb7ITO9isfMmubPjfPze227wsx5g0u2Sntm30P7b3nNwvT-8W5_nl9dnF4vgyd5zrIS9Kiciwks6C07bmgJWudaWFYAKEhkIp0BIQFJOodVkpxBLR27JU6AHn5GDTdx36p9HHwaya6Hzb2s73YzSqkJILriZy_0MSC8T05ecgS5vllKoEHn4IUpmsKyl4kdBf79DHfgxd2oxRQiYA0lxzQjeQC32MwddmHZqVDS-GgpnyNVO-ZsrXbPNNmt_bxjY629bBdq6Jb0KWbKahJgN7G67x3r-VudICGcNXK8uqeA</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Moser, G.</creator><creator>Serpico, S.B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope><scope>7ST</scope><scope>7U6</scope></search><sort><creationdate>20090701</creationdate><title>Unsupervised Change Detection From Multichannel SAR Data by Markovian Data Fusion</title><author>Moser, G. ; Serpico, S.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-6b73323d7ca0c9af403d9f9d955250590688097030827399bd833b33eabb83e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive optics</topic><topic>Algorithms</topic><topic>Applied geophysics</topic><topic>Biomedical optical imaging</topic><topic>Change detection</topic><topic>Channels</topic><topic>Condition monitoring</topic><topic>Context modeling</topic><topic>Data fusion</topic><topic>Data integration</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>expectation-maximization (EM)</topic><topic>Frequency</topic><topic>Internal geophysics</topic><topic>Markov random fields</topic><topic>Markov random fields (MRFs)</topic><topic>Multichannel</topic><topic>multichannel SAR</topic><topic>Pixel</topic><topic>Polarization</topic><topic>Radar detection</topic><topic>Studies</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moser, G.</creatorcontrib><creatorcontrib>Serpico, S.B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moser, G.</au><au>Serpico, S.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Change Detection From Multichannel SAR Data by Markovian Data Fusion</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>47</volume><issue>7</issue><spage>2114</spage><epage>2128</epage><pages>2114-2128</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In applications related to environmental monitoring and disaster management, multichannel synthetic aperture radar (SAR) data present a great potential, owing both to their insensitivity to atmospheric and Sun-illumination conditions and to the improved discrimination capability they may provide as compared with single-channel SAR. However, exploiting this potential requires accurate and automatic techniques to generate change maps from (multichannel) SAR images acquired over the same geographic region in different polarizations or at different frequencies at different times. In this paper, a contextual unsupervised change-detection technique (based on a data-fusion approach) is proposed for two-date multichannel SAR images. Each SAR channel is modeled as a distinct information source, and a Markovian approach to data fusion is adopted. A Markov random field model is introduced that combines together the information conveyed by each SAR channel and the spatial contextual information concerning the correlation among neighboring pixels and formulated by using ldquoenergy functions.rdquo In order to address the task of the estimation of the model parameters, the expectation-maximization algorithm is combined with the recently proposed ldquomethod of log-cumulants.rdquo The proposed technique was experimentally validated with semisimulated multipolarization and multifrequency data and with real SIR-C/XSAR images.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2009.2012407</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2009-07, Vol.47 (7), p.2114-2128
issn 0196-2892
1558-0644
language eng
recordid cdi_pascalfrancis_primary_21835056
source IEEE Electronic Library (IEL)
subjects Adaptive optics
Algorithms
Applied geophysics
Biomedical optical imaging
Change detection
Channels
Condition monitoring
Context modeling
Data fusion
Data integration
Earth sciences
Earth, ocean, space
Exact sciences and technology
expectation-maximization (EM)
Frequency
Internal geophysics
Markov random fields
Markov random fields (MRFs)
Multichannel
multichannel SAR
Pixel
Polarization
Radar detection
Studies
Synthetic aperture radar
synthetic aperture radar (SAR)
Unmanned aerial vehicles
title Unsupervised Change Detection From Multichannel SAR Data by Markovian Data Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A15%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Change%20Detection%20From%20Multichannel%20SAR%20Data%20by%20Markovian%20Data%20Fusion&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Moser,%20G.&rft.date=2009-07-01&rft.volume=47&rft.issue=7&rft.spage=2114&rft.epage=2128&rft.pages=2114-2128&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2009.2012407&rft_dat=%3Cproquest_RIE%3E2295158181%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857463083&rft_id=info:pmid/&rft_ieee_id=4895322&rfr_iscdi=true