LMI Conditions for the Stability of Linear Uncertain Polynomially Time-Varying Systems

This technical note investigates the robust stability of uncertain linear time-varying systems with a mode-switch dynamics. Each mode is characterized by a dynamical matrix containing elements whose time behavior over bounded time intervals is described by interval polynomials of arbitrary degree. U...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2009-07, Vol.54 (7), p.1705-1709
Hauptverfasser: Jetto, L., Orsini, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1709
container_issue 7
container_start_page 1705
container_title IEEE transactions on automatic control
container_volume 54
creator Jetto, L.
Orsini, V.
description This technical note investigates the robust stability of uncertain linear time-varying systems with a mode-switch dynamics. Each mode is characterized by a dynamical matrix containing elements whose time behavior over bounded time intervals is described by interval polynomials of arbitrary degree. Using a quadratic Lyapunov function polynomially depending on time, stability conditions for each mode are stated in terms of linear matrix inequalities (LMIs). The stability conditions of the switching system are stated both in terms of minimum and average dwell time. A salient feature of the technical note is that the single-mode stability conditions given here allow the parameters and their derivatives to take values over arbitrarily large uncertainty sets.
doi_str_mv 10.1109/TAC.2009.2020645
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_21831197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5109483</ieee_id><sourcerecordid>2316727841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-5f05972283a7f2534a4920bbd098e778ef7fd5a92947909ce1cabd683117e0013</originalsourceid><addsrcrecordid>eNp9kc1rGzEUxEVIII6Te6AXUWh72kSfK-kYTNoGXBqI7auQ10-twq6USuvD_veVscmhh14kxPvNPEaD0C0ld5QSc796WNwxQkw9GGmFPEMzKqVumGT8HM0IoboxTLeX6KqU1_pshaAztFn-eMKLFHdhDCkW7FPG42_AL6Pbhj6ME04eL0MEl_E6dpBHFyJ-Tv0U0xBc3094FQZoNi5PIf7CL1MZYSjX6MK7vsDN6Z6j9dfH1eJ7s_z57WnxsGw6rvnYSE-kUYxp7pRnkgsnDCPb7Y4YDUpp8MrvpDPMCGWI6YB2brtrNadUQc3A5-jL0fctpz97KKMdQumg712EtC9WK0kEo6Kt5Of_klwYw02rKvjxH_A17XOsKaxuKTNMGV4hcoS6nErJ4O1bDkP9A0uJPfRhax_20Ic99VEln06-rnSu99nFLpR3HaOHVOaw_8ORCwDwPpbVU2jO_wKvvZGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861292793</pqid></control><display><type>article</type><title>LMI Conditions for the Stability of Linear Uncertain Polynomially Time-Varying Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Jetto, L. ; Orsini, V.</creator><creatorcontrib>Jetto, L. ; Orsini, V.</creatorcontrib><description>This technical note investigates the robust stability of uncertain linear time-varying systems with a mode-switch dynamics. Each mode is characterized by a dynamical matrix containing elements whose time behavior over bounded time intervals is described by interval polynomials of arbitrary degree. Using a quadratic Lyapunov function polynomially depending on time, stability conditions for each mode are stated in terms of linear matrix inequalities (LMIs). The stability conditions of the switching system are stated both in terms of minimum and average dwell time. A salient feature of the technical note is that the single-mode stability conditions given here allow the parameters and their derivatives to take values over arbitrarily large uncertainty sets.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2009.2020645</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Covariance matrix ; Derivatives ; Dwell time ; Dynamic tests ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Linear matrix inequalities ; Linear matrix inequalities (LMIs) ; Lyapunov functions ; Lyapunov method ; Polynomials ; Robust stability ; robust stability analysis ; Stability ; Switching ; Switching systems ; Time varying systems ; Uncertain systems ; Uncertainty ; White noise</subject><ispartof>IEEE transactions on automatic control, 2009-07, Vol.54 (7), p.1705-1709</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-5f05972283a7f2534a4920bbd098e778ef7fd5a92947909ce1cabd683117e0013</citedby><cites>FETCH-LOGICAL-c383t-5f05972283a7f2534a4920bbd098e778ef7fd5a92947909ce1cabd683117e0013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5109483$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5109483$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21831197$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jetto, L.</creatorcontrib><creatorcontrib>Orsini, V.</creatorcontrib><title>LMI Conditions for the Stability of Linear Uncertain Polynomially Time-Varying Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This technical note investigates the robust stability of uncertain linear time-varying systems with a mode-switch dynamics. Each mode is characterized by a dynamical matrix containing elements whose time behavior over bounded time intervals is described by interval polynomials of arbitrary degree. Using a quadratic Lyapunov function polynomially depending on time, stability conditions for each mode are stated in terms of linear matrix inequalities (LMIs). The stability conditions of the switching system are stated both in terms of minimum and average dwell time. A salient feature of the technical note is that the single-mode stability conditions given here allow the parameters and their derivatives to take values over arbitrarily large uncertainty sets.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Covariance matrix</subject><subject>Derivatives</subject><subject>Dwell time</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Linear matrix inequalities</subject><subject>Linear matrix inequalities (LMIs)</subject><subject>Lyapunov functions</subject><subject>Lyapunov method</subject><subject>Polynomials</subject><subject>Robust stability</subject><subject>robust stability analysis</subject><subject>Stability</subject><subject>Switching</subject><subject>Switching systems</subject><subject>Time varying systems</subject><subject>Uncertain systems</subject><subject>Uncertainty</subject><subject>White noise</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1rGzEUxEVIII6Te6AXUWh72kSfK-kYTNoGXBqI7auQ10-twq6USuvD_veVscmhh14kxPvNPEaD0C0ld5QSc796WNwxQkw9GGmFPEMzKqVumGT8HM0IoboxTLeX6KqU1_pshaAztFn-eMKLFHdhDCkW7FPG42_AL6Pbhj6ME04eL0MEl_E6dpBHFyJ-Tv0U0xBc3094FQZoNi5PIf7CL1MZYSjX6MK7vsDN6Z6j9dfH1eJ7s_z57WnxsGw6rvnYSE-kUYxp7pRnkgsnDCPb7Y4YDUpp8MrvpDPMCGWI6YB2brtrNadUQc3A5-jL0fctpz97KKMdQumg712EtC9WK0kEo6Kt5Of_klwYw02rKvjxH_A17XOsKaxuKTNMGV4hcoS6nErJ4O1bDkP9A0uJPfRhax_20Ic99VEln06-rnSu99nFLpR3HaOHVOaw_8ORCwDwPpbVU2jO_wKvvZGA</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Jetto, L.</creator><creator>Orsini, V.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20090701</creationdate><title>LMI Conditions for the Stability of Linear Uncertain Polynomially Time-Varying Systems</title><author>Jetto, L. ; Orsini, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-5f05972283a7f2534a4920bbd098e778ef7fd5a92947909ce1cabd683117e0013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Covariance matrix</topic><topic>Derivatives</topic><topic>Dwell time</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Linear matrix inequalities</topic><topic>Linear matrix inequalities (LMIs)</topic><topic>Lyapunov functions</topic><topic>Lyapunov method</topic><topic>Polynomials</topic><topic>Robust stability</topic><topic>robust stability analysis</topic><topic>Stability</topic><topic>Switching</topic><topic>Switching systems</topic><topic>Time varying systems</topic><topic>Uncertain systems</topic><topic>Uncertainty</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jetto, L.</creatorcontrib><creatorcontrib>Orsini, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jetto, L.</au><au>Orsini, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LMI Conditions for the Stability of Linear Uncertain Polynomially Time-Varying Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>54</volume><issue>7</issue><spage>1705</spage><epage>1709</epage><pages>1705-1709</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This technical note investigates the robust stability of uncertain linear time-varying systems with a mode-switch dynamics. Each mode is characterized by a dynamical matrix containing elements whose time behavior over bounded time intervals is described by interval polynomials of arbitrary degree. Using a quadratic Lyapunov function polynomially depending on time, stability conditions for each mode are stated in terms of linear matrix inequalities (LMIs). The stability conditions of the switching system are stated both in terms of minimum and average dwell time. A salient feature of the technical note is that the single-mode stability conditions given here allow the parameters and their derivatives to take values over arbitrarily large uncertainty sets.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2009.2020645</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2009-07, Vol.54 (7), p.1705-1709
issn 0018-9286
1558-2523
language eng
recordid cdi_pascalfrancis_primary_21831197
source IEEE Electronic Library (IEL)
subjects Applied sciences
Computer science
control theory
systems
Control system analysis
Control theory. Systems
Covariance matrix
Derivatives
Dwell time
Dynamic tests
Dynamical systems
Dynamics
Exact sciences and technology
Linear matrix inequalities
Linear matrix inequalities (LMIs)
Lyapunov functions
Lyapunov method
Polynomials
Robust stability
robust stability analysis
Stability
Switching
Switching systems
Time varying systems
Uncertain systems
Uncertainty
White noise
title LMI Conditions for the Stability of Linear Uncertain Polynomially Time-Varying Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LMI%20Conditions%20for%20the%20Stability%20of%20Linear%20Uncertain%20Polynomially%20Time-Varying%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Jetto,%20L.&rft.date=2009-07-01&rft.volume=54&rft.issue=7&rft.spage=1705&rft.epage=1709&rft.pages=1705-1709&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2009.2020645&rft_dat=%3Cproquest_RIE%3E2316727841%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861292793&rft_id=info:pmid/&rft_ieee_id=5109483&rfr_iscdi=true