Duality Gap Estimation and Polynomial Time Approximation for Optimal Spectrum Management

Consider a communication system whereby multiple users share a common frequency band and must choose their transmit power spectra jointly in response to physical channel conditions including the effects of interference. The goal of the users is to maximize a system-wide utility function (e.g., weigh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2009-07, Vol.57 (7), p.2675-2689
Hauptverfasser: LUO, Zhi-Quan, SHUZHONG ZHANG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2689
container_issue 7
container_start_page 2675
container_title IEEE transactions on signal processing
container_volume 57
creator LUO, Zhi-Quan
SHUZHONG ZHANG
description Consider a communication system whereby multiple users share a common frequency band and must choose their transmit power spectra jointly in response to physical channel conditions including the effects of interference. The goal of the users is to maximize a system-wide utility function (e.g., weighted sum-rate of all users), subject to individual power constraints. A popular approach to solve the discretized version of this nonconvex problem is by Lagrangian dual relaxation. Unfortunately the discretized spectrum management problem is NP-hard and its Lagrangian dual is in general not equivalent to the primal formulation due to a positive duality gap. In this paper, we use a convexity result of Lyapunov to estimate the size of duality gap for the discretized spectrum management problem and show that the duality gap vanishes asymptotically at the rate O (1/radic N ), where N is the size of the uniform discretization of the shared spectrum. If the channels are frequency flat, the duality gap estimate improves to O (1/ N ) . Moreover, when restricted to the FDMA spectrum sharing strategies, we show that the Lagrangian dual relaxation, combined with a linear programming scheme, can generate an epsiv -optimal solution for the continuous formulation of the spectrum management problem in polynomial time for any epsiv > 0 .
doi_str_mv 10.1109/TSP.2009.2016871
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_21742475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4799109</ieee_id><sourcerecordid>1671231870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-5fafb1200bf50a3bff8dbeced79b2d684bd7ec4c259050695c0e8d36a9e130c43</originalsourceid><addsrcrecordid>eNpdkEtrGzEUhYeSQPPaF7oRhUI34-iOXqNlcNyk4OJAXPBOaDRXZcy8Ks1A_e8rYzeLbK4u6DuHc0-WfQK6AKD6fvv6sigo1WmALBV8yK5Ac8gpV_Ii7VSwXJRq9zG7jnFPKXCu5VW2e5xt20wH8mRHsopT09mpGXpi-5q8DO2hH7rGtmTbdEgexjEMf_8TfghkMx4FLXkd0U1h7shP29vf2GE_3WaX3rYR787vTfbr-2q7fM7Xm6cfy4d17phgUy689RWk4JUX1LLK-7Ku0GGtdFXUsuRVrdBxVwhNBZVaOIplzaTVCIw6zm6ybyfflO3PjHEyXRMdtq3tcZijAamgYFAqmtAv79D9MIc-pTOlBGAMpEgQPUEuDDEG9GYM6cZwMEDNsWmTmjbHps256ST5eva10dnWB9u7Jr7pClC84Opo_fnENYj49s2V1smW_QM2RYd1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861133165</pqid></control><display><type>article</type><title>Duality Gap Estimation and Polynomial Time Approximation for Optimal Spectrum Management</title><source>IEEE Electronic Library (IEL)</source><creator>LUO, Zhi-Quan ; SHUZHONG ZHANG</creator><creatorcontrib>LUO, Zhi-Quan ; SHUZHONG ZHANG</creatorcontrib><description>Consider a communication system whereby multiple users share a common frequency band and must choose their transmit power spectra jointly in response to physical channel conditions including the effects of interference. The goal of the users is to maximize a system-wide utility function (e.g., weighted sum-rate of all users), subject to individual power constraints. A popular approach to solve the discretized version of this nonconvex problem is by Lagrangian dual relaxation. Unfortunately the discretized spectrum management problem is NP-hard and its Lagrangian dual is in general not equivalent to the primal formulation due to a positive duality gap. In this paper, we use a convexity result of Lyapunov to estimate the size of duality gap for the discretized spectrum management problem and show that the duality gap vanishes asymptotically at the rate O (1/radic N ), where N is the size of the uniform discretization of the shared spectrum. If the channels are frequency flat, the duality gap estimate improves to O (1/ N ) . Moreover, when restricted to the FDMA spectrum sharing strategies, we show that the Lagrangian dual relaxation, combined with a linear programming scheme, can generate an epsiv -optimal solution for the continuous formulation of the spectrum management problem in polynomial time for any epsiv &gt; 0 .</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2009.2016871</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Asymptotic properties ; Channels ; Cognitive radio ; Communication systems ; complexity ; Crosstalk ; Discretization ; DSL ; duality ; epsilon -approximation ; Estimates ; Exact sciences and technology ; Formulations ; Frequency domain analysis ; Frequency estimation ; Information, signal and communications theory ; Interference ; Lagrangian functions ; Management ; Mathematical analysis ; Miscellaneous ; Operations research ; Polynomials ; Radio spectrum management ; Signal processing ; spectrum management ; Studies ; sum-rate maximization ; System performance ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2009-07, Vol.57 (7), p.2675-2689</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-5fafb1200bf50a3bff8dbeced79b2d684bd7ec4c259050695c0e8d36a9e130c43</citedby><cites>FETCH-LOGICAL-c353t-5fafb1200bf50a3bff8dbeced79b2d684bd7ec4c259050695c0e8d36a9e130c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4799109$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4799109$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21742475$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LUO, Zhi-Quan</creatorcontrib><creatorcontrib>SHUZHONG ZHANG</creatorcontrib><title>Duality Gap Estimation and Polynomial Time Approximation for Optimal Spectrum Management</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Consider a communication system whereby multiple users share a common frequency band and must choose their transmit power spectra jointly in response to physical channel conditions including the effects of interference. The goal of the users is to maximize a system-wide utility function (e.g., weighted sum-rate of all users), subject to individual power constraints. A popular approach to solve the discretized version of this nonconvex problem is by Lagrangian dual relaxation. Unfortunately the discretized spectrum management problem is NP-hard and its Lagrangian dual is in general not equivalent to the primal formulation due to a positive duality gap. In this paper, we use a convexity result of Lyapunov to estimate the size of duality gap for the discretized spectrum management problem and show that the duality gap vanishes asymptotically at the rate O (1/radic N ), where N is the size of the uniform discretization of the shared spectrum. If the channels are frequency flat, the duality gap estimate improves to O (1/ N ) . Moreover, when restricted to the FDMA spectrum sharing strategies, we show that the Lagrangian dual relaxation, combined with a linear programming scheme, can generate an epsiv -optimal solution for the continuous formulation of the spectrum management problem in polynomial time for any epsiv &gt; 0 .</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Channels</subject><subject>Cognitive radio</subject><subject>Communication systems</subject><subject>complexity</subject><subject>Crosstalk</subject><subject>Discretization</subject><subject>DSL</subject><subject>duality</subject><subject>epsilon -approximation</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Formulations</subject><subject>Frequency domain analysis</subject><subject>Frequency estimation</subject><subject>Information, signal and communications theory</subject><subject>Interference</subject><subject>Lagrangian functions</subject><subject>Management</subject><subject>Mathematical analysis</subject><subject>Miscellaneous</subject><subject>Operations research</subject><subject>Polynomials</subject><subject>Radio spectrum management</subject><subject>Signal processing</subject><subject>spectrum management</subject><subject>Studies</subject><subject>sum-rate maximization</subject><subject>System performance</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtrGzEUhYeSQPPaF7oRhUI34-iOXqNlcNyk4OJAXPBOaDRXZcy8Ks1A_e8rYzeLbK4u6DuHc0-WfQK6AKD6fvv6sigo1WmALBV8yK5Ac8gpV_Ii7VSwXJRq9zG7jnFPKXCu5VW2e5xt20wH8mRHsopT09mpGXpi-5q8DO2hH7rGtmTbdEgexjEMf_8TfghkMx4FLXkd0U1h7shP29vf2GE_3WaX3rYR787vTfbr-2q7fM7Xm6cfy4d17phgUy689RWk4JUX1LLK-7Ku0GGtdFXUsuRVrdBxVwhNBZVaOIplzaTVCIw6zm6ybyfflO3PjHEyXRMdtq3tcZijAamgYFAqmtAv79D9MIc-pTOlBGAMpEgQPUEuDDEG9GYM6cZwMEDNsWmTmjbHps256ST5eva10dnWB9u7Jr7pClC84Opo_fnENYj49s2V1smW_QM2RYd1</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>LUO, Zhi-Quan</creator><creator>SHUZHONG ZHANG</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090701</creationdate><title>Duality Gap Estimation and Polynomial Time Approximation for Optimal Spectrum Management</title><author>LUO, Zhi-Quan ; SHUZHONG ZHANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-5fafb1200bf50a3bff8dbeced79b2d684bd7ec4c259050695c0e8d36a9e130c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Channels</topic><topic>Cognitive radio</topic><topic>Communication systems</topic><topic>complexity</topic><topic>Crosstalk</topic><topic>Discretization</topic><topic>DSL</topic><topic>duality</topic><topic>epsilon -approximation</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Formulations</topic><topic>Frequency domain analysis</topic><topic>Frequency estimation</topic><topic>Information, signal and communications theory</topic><topic>Interference</topic><topic>Lagrangian functions</topic><topic>Management</topic><topic>Mathematical analysis</topic><topic>Miscellaneous</topic><topic>Operations research</topic><topic>Polynomials</topic><topic>Radio spectrum management</topic><topic>Signal processing</topic><topic>spectrum management</topic><topic>Studies</topic><topic>sum-rate maximization</topic><topic>System performance</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LUO, Zhi-Quan</creatorcontrib><creatorcontrib>SHUZHONG ZHANG</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LUO, Zhi-Quan</au><au>SHUZHONG ZHANG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duality Gap Estimation and Polynomial Time Approximation for Optimal Spectrum Management</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>57</volume><issue>7</issue><spage>2675</spage><epage>2689</epage><pages>2675-2689</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Consider a communication system whereby multiple users share a common frequency band and must choose their transmit power spectra jointly in response to physical channel conditions including the effects of interference. The goal of the users is to maximize a system-wide utility function (e.g., weighted sum-rate of all users), subject to individual power constraints. A popular approach to solve the discretized version of this nonconvex problem is by Lagrangian dual relaxation. Unfortunately the discretized spectrum management problem is NP-hard and its Lagrangian dual is in general not equivalent to the primal formulation due to a positive duality gap. In this paper, we use a convexity result of Lyapunov to estimate the size of duality gap for the discretized spectrum management problem and show that the duality gap vanishes asymptotically at the rate O (1/radic N ), where N is the size of the uniform discretization of the shared spectrum. If the channels are frequency flat, the duality gap estimate improves to O (1/ N ) . Moreover, when restricted to the FDMA spectrum sharing strategies, we show that the Lagrangian dual relaxation, combined with a linear programming scheme, can generate an epsiv -optimal solution for the continuous formulation of the spectrum management problem in polynomial time for any epsiv &gt; 0 .</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2009.2016871</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2009-07, Vol.57 (7), p.2675-2689
issn 1053-587X
1941-0476
language eng
recordid cdi_pascalfrancis_primary_21742475
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Asymptotic properties
Channels
Cognitive radio
Communication systems
complexity
Crosstalk
Discretization
DSL
duality
epsilon -approximation
Estimates
Exact sciences and technology
Formulations
Frequency domain analysis
Frequency estimation
Information, signal and communications theory
Interference
Lagrangian functions
Management
Mathematical analysis
Miscellaneous
Operations research
Polynomials
Radio spectrum management
Signal processing
spectrum management
Studies
sum-rate maximization
System performance
Telecommunications and information theory
title Duality Gap Estimation and Polynomial Time Approximation for Optimal Spectrum Management
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duality%20Gap%20Estimation%20and%20Polynomial%20Time%20Approximation%20for%20Optimal%20Spectrum%20Management&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=LUO,%20Zhi-Quan&rft.date=2009-07-01&rft.volume=57&rft.issue=7&rft.spage=2675&rft.epage=2689&rft.pages=2675-2689&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2009.2016871&rft_dat=%3Cproquest_RIE%3E1671231870%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861133165&rft_id=info:pmid/&rft_ieee_id=4799109&rfr_iscdi=true