Duality Gap Estimation and Polynomial Time Approximation for Optimal Spectrum Management
Consider a communication system whereby multiple users share a common frequency band and must choose their transmit power spectra jointly in response to physical channel conditions including the effects of interference. The goal of the users is to maximize a system-wide utility function (e.g., weigh...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2009-07, Vol.57 (7), p.2675-2689 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2689 |
---|---|
container_issue | 7 |
container_start_page | 2675 |
container_title | IEEE transactions on signal processing |
container_volume | 57 |
creator | LUO, Zhi-Quan SHUZHONG ZHANG |
description | Consider a communication system whereby multiple users share a common frequency band and must choose their transmit power spectra jointly in response to physical channel conditions including the effects of interference. The goal of the users is to maximize a system-wide utility function (e.g., weighted sum-rate of all users), subject to individual power constraints. A popular approach to solve the discretized version of this nonconvex problem is by Lagrangian dual relaxation. Unfortunately the discretized spectrum management problem is NP-hard and its Lagrangian dual is in general not equivalent to the primal formulation due to a positive duality gap. In this paper, we use a convexity result of Lyapunov to estimate the size of duality gap for the discretized spectrum management problem and show that the duality gap vanishes asymptotically at the rate O (1/radic N ), where N is the size of the uniform discretization of the shared spectrum. If the channels are frequency flat, the duality gap estimate improves to O (1/ N ) . Moreover, when restricted to the FDMA spectrum sharing strategies, we show that the Lagrangian dual relaxation, combined with a linear programming scheme, can generate an epsiv -optimal solution for the continuous formulation of the spectrum management problem in polynomial time for any epsiv > 0 . |
doi_str_mv | 10.1109/TSP.2009.2016871 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_21742475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4799109</ieee_id><sourcerecordid>1671231870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-5fafb1200bf50a3bff8dbeced79b2d684bd7ec4c259050695c0e8d36a9e130c43</originalsourceid><addsrcrecordid>eNpdkEtrGzEUhYeSQPPaF7oRhUI34-iOXqNlcNyk4OJAXPBOaDRXZcy8Ks1A_e8rYzeLbK4u6DuHc0-WfQK6AKD6fvv6sigo1WmALBV8yK5Ac8gpV_Ii7VSwXJRq9zG7jnFPKXCu5VW2e5xt20wH8mRHsopT09mpGXpi-5q8DO2hH7rGtmTbdEgexjEMf_8TfghkMx4FLXkd0U1h7shP29vf2GE_3WaX3rYR787vTfbr-2q7fM7Xm6cfy4d17phgUy689RWk4JUX1LLK-7Ku0GGtdFXUsuRVrdBxVwhNBZVaOIplzaTVCIw6zm6ybyfflO3PjHEyXRMdtq3tcZijAamgYFAqmtAv79D9MIc-pTOlBGAMpEgQPUEuDDEG9GYM6cZwMEDNsWmTmjbHps256ST5eva10dnWB9u7Jr7pClC84Opo_fnENYj49s2V1smW_QM2RYd1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861133165</pqid></control><display><type>article</type><title>Duality Gap Estimation and Polynomial Time Approximation for Optimal Spectrum Management</title><source>IEEE Electronic Library (IEL)</source><creator>LUO, Zhi-Quan ; SHUZHONG ZHANG</creator><creatorcontrib>LUO, Zhi-Quan ; SHUZHONG ZHANG</creatorcontrib><description>Consider a communication system whereby multiple users share a common frequency band and must choose their transmit power spectra jointly in response to physical channel conditions including the effects of interference. The goal of the users is to maximize a system-wide utility function (e.g., weighted sum-rate of all users), subject to individual power constraints. A popular approach to solve the discretized version of this nonconvex problem is by Lagrangian dual relaxation. Unfortunately the discretized spectrum management problem is NP-hard and its Lagrangian dual is in general not equivalent to the primal formulation due to a positive duality gap. In this paper, we use a convexity result of Lyapunov to estimate the size of duality gap for the discretized spectrum management problem and show that the duality gap vanishes asymptotically at the rate O (1/radic N ), where N is the size of the uniform discretization of the shared spectrum. If the channels are frequency flat, the duality gap estimate improves to O (1/ N ) . Moreover, when restricted to the FDMA spectrum sharing strategies, we show that the Lagrangian dual relaxation, combined with a linear programming scheme, can generate an epsiv -optimal solution for the continuous formulation of the spectrum management problem in polynomial time for any epsiv > 0 .</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2009.2016871</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Asymptotic properties ; Channels ; Cognitive radio ; Communication systems ; complexity ; Crosstalk ; Discretization ; DSL ; duality ; epsilon -approximation ; Estimates ; Exact sciences and technology ; Formulations ; Frequency domain analysis ; Frequency estimation ; Information, signal and communications theory ; Interference ; Lagrangian functions ; Management ; Mathematical analysis ; Miscellaneous ; Operations research ; Polynomials ; Radio spectrum management ; Signal processing ; spectrum management ; Studies ; sum-rate maximization ; System performance ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2009-07, Vol.57 (7), p.2675-2689</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-5fafb1200bf50a3bff8dbeced79b2d684bd7ec4c259050695c0e8d36a9e130c43</citedby><cites>FETCH-LOGICAL-c353t-5fafb1200bf50a3bff8dbeced79b2d684bd7ec4c259050695c0e8d36a9e130c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4799109$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4799109$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21742475$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LUO, Zhi-Quan</creatorcontrib><creatorcontrib>SHUZHONG ZHANG</creatorcontrib><title>Duality Gap Estimation and Polynomial Time Approximation for Optimal Spectrum Management</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Consider a communication system whereby multiple users share a common frequency band and must choose their transmit power spectra jointly in response to physical channel conditions including the effects of interference. The goal of the users is to maximize a system-wide utility function (e.g., weighted sum-rate of all users), subject to individual power constraints. A popular approach to solve the discretized version of this nonconvex problem is by Lagrangian dual relaxation. Unfortunately the discretized spectrum management problem is NP-hard and its Lagrangian dual is in general not equivalent to the primal formulation due to a positive duality gap. In this paper, we use a convexity result of Lyapunov to estimate the size of duality gap for the discretized spectrum management problem and show that the duality gap vanishes asymptotically at the rate O (1/radic N ), where N is the size of the uniform discretization of the shared spectrum. If the channels are frequency flat, the duality gap estimate improves to O (1/ N ) . Moreover, when restricted to the FDMA spectrum sharing strategies, we show that the Lagrangian dual relaxation, combined with a linear programming scheme, can generate an epsiv -optimal solution for the continuous formulation of the spectrum management problem in polynomial time for any epsiv > 0 .</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Channels</subject><subject>Cognitive radio</subject><subject>Communication systems</subject><subject>complexity</subject><subject>Crosstalk</subject><subject>Discretization</subject><subject>DSL</subject><subject>duality</subject><subject>epsilon -approximation</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Formulations</subject><subject>Frequency domain analysis</subject><subject>Frequency estimation</subject><subject>Information, signal and communications theory</subject><subject>Interference</subject><subject>Lagrangian functions</subject><subject>Management</subject><subject>Mathematical analysis</subject><subject>Miscellaneous</subject><subject>Operations research</subject><subject>Polynomials</subject><subject>Radio spectrum management</subject><subject>Signal processing</subject><subject>spectrum management</subject><subject>Studies</subject><subject>sum-rate maximization</subject><subject>System performance</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtrGzEUhYeSQPPaF7oRhUI34-iOXqNlcNyk4OJAXPBOaDRXZcy8Ks1A_e8rYzeLbK4u6DuHc0-WfQK6AKD6fvv6sigo1WmALBV8yK5Ac8gpV_Ii7VSwXJRq9zG7jnFPKXCu5VW2e5xt20wH8mRHsopT09mpGXpi-5q8DO2hH7rGtmTbdEgexjEMf_8TfghkMx4FLXkd0U1h7shP29vf2GE_3WaX3rYR787vTfbr-2q7fM7Xm6cfy4d17phgUy689RWk4JUX1LLK-7Ku0GGtdFXUsuRVrdBxVwhNBZVaOIplzaTVCIw6zm6ybyfflO3PjHEyXRMdtq3tcZijAamgYFAqmtAv79D9MIc-pTOlBGAMpEgQPUEuDDEG9GYM6cZwMEDNsWmTmjbHps256ST5eva10dnWB9u7Jr7pClC84Opo_fnENYj49s2V1smW_QM2RYd1</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>LUO, Zhi-Quan</creator><creator>SHUZHONG ZHANG</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090701</creationdate><title>Duality Gap Estimation and Polynomial Time Approximation for Optimal Spectrum Management</title><author>LUO, Zhi-Quan ; SHUZHONG ZHANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-5fafb1200bf50a3bff8dbeced79b2d684bd7ec4c259050695c0e8d36a9e130c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Channels</topic><topic>Cognitive radio</topic><topic>Communication systems</topic><topic>complexity</topic><topic>Crosstalk</topic><topic>Discretization</topic><topic>DSL</topic><topic>duality</topic><topic>epsilon -approximation</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Formulations</topic><topic>Frequency domain analysis</topic><topic>Frequency estimation</topic><topic>Information, signal and communications theory</topic><topic>Interference</topic><topic>Lagrangian functions</topic><topic>Management</topic><topic>Mathematical analysis</topic><topic>Miscellaneous</topic><topic>Operations research</topic><topic>Polynomials</topic><topic>Radio spectrum management</topic><topic>Signal processing</topic><topic>spectrum management</topic><topic>Studies</topic><topic>sum-rate maximization</topic><topic>System performance</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LUO, Zhi-Quan</creatorcontrib><creatorcontrib>SHUZHONG ZHANG</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LUO, Zhi-Quan</au><au>SHUZHONG ZHANG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duality Gap Estimation and Polynomial Time Approximation for Optimal Spectrum Management</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>57</volume><issue>7</issue><spage>2675</spage><epage>2689</epage><pages>2675-2689</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Consider a communication system whereby multiple users share a common frequency band and must choose their transmit power spectra jointly in response to physical channel conditions including the effects of interference. The goal of the users is to maximize a system-wide utility function (e.g., weighted sum-rate of all users), subject to individual power constraints. A popular approach to solve the discretized version of this nonconvex problem is by Lagrangian dual relaxation. Unfortunately the discretized spectrum management problem is NP-hard and its Lagrangian dual is in general not equivalent to the primal formulation due to a positive duality gap. In this paper, we use a convexity result of Lyapunov to estimate the size of duality gap for the discretized spectrum management problem and show that the duality gap vanishes asymptotically at the rate O (1/radic N ), where N is the size of the uniform discretization of the shared spectrum. If the channels are frequency flat, the duality gap estimate improves to O (1/ N ) . Moreover, when restricted to the FDMA spectrum sharing strategies, we show that the Lagrangian dual relaxation, combined with a linear programming scheme, can generate an epsiv -optimal solution for the continuous formulation of the spectrum management problem in polynomial time for any epsiv > 0 .</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2009.2016871</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2009-07, Vol.57 (7), p.2675-2689 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_pascalfrancis_primary_21742475 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Asymptotic properties Channels Cognitive radio Communication systems complexity Crosstalk Discretization DSL duality epsilon -approximation Estimates Exact sciences and technology Formulations Frequency domain analysis Frequency estimation Information, signal and communications theory Interference Lagrangian functions Management Mathematical analysis Miscellaneous Operations research Polynomials Radio spectrum management Signal processing spectrum management Studies sum-rate maximization System performance Telecommunications and information theory |
title | Duality Gap Estimation and Polynomial Time Approximation for Optimal Spectrum Management |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duality%20Gap%20Estimation%20and%20Polynomial%20Time%20Approximation%20for%20Optimal%20Spectrum%20Management&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=LUO,%20Zhi-Quan&rft.date=2009-07-01&rft.volume=57&rft.issue=7&rft.spage=2675&rft.epage=2689&rft.pages=2675-2689&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2009.2016871&rft_dat=%3Cproquest_RIE%3E1671231870%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861133165&rft_id=info:pmid/&rft_ieee_id=4799109&rfr_iscdi=true |