Eigenvalue-based spectrum sensing algorithms for cognitive radio
Spectrum sensing is a fundamental component in a cognitive radio. In this paper, we propose new sensing methods based on the eigenvalues of the covariance matrix of signals received at the secondary users. In particular, two sensing algorithms are suggested, one is based on the ratio of the maximum...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2009-06, Vol.57 (6), p.1784-1793 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1793 |
---|---|
container_issue | 6 |
container_start_page | 1784 |
container_title | IEEE transactions on communications |
container_volume | 57 |
creator | YONGHONG ZENG LIANG, Ying-Chang |
description | Spectrum sensing is a fundamental component in a cognitive radio. In this paper, we propose new sensing methods based on the eigenvalues of the covariance matrix of signals received at the secondary users. In particular, two sensing algorithms are suggested, one is based on the ratio of the maximum eigenvalue to minimum eigenvalue; the other is based on the ratio of the average eigenvalue to minimum eigenvalue. Using some latest random matrix theories (RMT), we quantify the distributions of these ratios and derive the probabilities of false alarm and probabilities of detection for the proposed algorithms. We also find the thresholds of the methods for a given probability of false alarm. The proposed methods overcome the noise uncertainty problem, and can even perform better than the ideal energy detection when the signals to be detected are highly correlated. The methods can be used for various signal detection applications without requiring the knowledge of signal, channel and noise power. Simulations based on randomly generated signals, wireless microphone signals and captured ATSC DTV signals are presented to verify the effectiveness of the proposed methods. |
doi_str_mv | 10.1109/TCOMM.2009.06.070402 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_21742354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5089517</ieee_id><sourcerecordid>2291900201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-174b6a93d8286bbdbef2768631d79ef7497a7bf9a0e3049bfd7af964a814d64d3</originalsourceid><addsrcrecordid>eNp90DtPwzAQwHELgUR5fAIYIiRgSjnHjh8bqCoPiaoLzJaTnItRmhQ7QeLbYyhiYGDycL87yX9CTilMKQV99TRbLhbTAkBPQUxBAodih0xoWaocVCl3ySTNIBdSqn1yEOMrQDKMTcj13K-we7ftiHllIzZZ3GA9hHGdReyi71aZbVd98MPLOmauD1ndrzo_-HfMgm18f0T2nG0jHv-8h-T5dv40u88fl3cPs5vHvOZMDjmVvBJWs0YVSlRVU6ErpFCC0UZqdJJraWXltAVkwHXlGmmdFtwqyhvBG3ZILrd3N6F_GzEOZu1jjW1rO-zHaJTQimshRJIX_0omGJcaIMGzP_C1H0OXfmFUKTQtgJcJ8S2qQx9jQGc2wa9t-DAUzFd9813ffNU3IMy2flo7_7ltY21bF2xX-_i7W6QeBSt5cidb5xHxd1yC0iWV7BPo7419</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856912045</pqid></control><display><type>article</type><title>Eigenvalue-based spectrum sensing algorithms for cognitive radio</title><source>IEEE Electronic Library (IEL)</source><creator>YONGHONG ZENG ; LIANG, Ying-Chang</creator><creatorcontrib>YONGHONG ZENG ; LIANG, Ying-Chang</creatorcontrib><description>Spectrum sensing is a fundamental component in a cognitive radio. In this paper, we propose new sensing methods based on the eigenvalues of the covariance matrix of signals received at the secondary users. In particular, two sensing algorithms are suggested, one is based on the ratio of the maximum eigenvalue to minimum eigenvalue; the other is based on the ratio of the average eigenvalue to minimum eigenvalue. Using some latest random matrix theories (RMT), we quantify the distributions of these ratios and derive the probabilities of false alarm and probabilities of detection for the proposed algorithms. We also find the thresholds of the methods for a given probability of false alarm. The proposed methods overcome the noise uncertainty problem, and can even perform better than the ideal energy detection when the signals to be detected are highly correlated. The methods can be used for various signal detection applications without requiring the knowledge of signal, channel and noise power. Simulations based on randomly generated signals, wireless microphone signals and captured ATSC DTV signals are presented to verify the effectiveness of the proposed methods.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2009.06.070402</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Broadcasting. Videocommunications. Audiovisual ; Channels ; Cognitive radio ; Covariance matrix ; Detection ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; False alarms ; Frequency ; IEEE 802.22 wireless regional area networks (WRAN) ; Information, signal and communications theory ; Matrix theory ; Microphones ; Noise ; Radio ; Radiocommunication specific techniques ; Radiocommunications ; random matrix ; sensing algorithm ; Signal and communications theory ; Signal detection ; Signal to noise ratio ; Signal, noise ; spectrum sensing ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Television ; Transmission and modulation (techniques and equipments) ; Uncertainty ; Wireless sensor networks ; Working environment noise</subject><ispartof>IEEE transactions on communications, 2009-06, Vol.57 (6), p.1784-1793</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-174b6a93d8286bbdbef2768631d79ef7497a7bf9a0e3049bfd7af964a814d64d3</citedby><cites>FETCH-LOGICAL-c437t-174b6a93d8286bbdbef2768631d79ef7497a7bf9a0e3049bfd7af964a814d64d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5089517$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5089517$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21742354$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>YONGHONG ZENG</creatorcontrib><creatorcontrib>LIANG, Ying-Chang</creatorcontrib><title>Eigenvalue-based spectrum sensing algorithms for cognitive radio</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Spectrum sensing is a fundamental component in a cognitive radio. In this paper, we propose new sensing methods based on the eigenvalues of the covariance matrix of signals received at the secondary users. In particular, two sensing algorithms are suggested, one is based on the ratio of the maximum eigenvalue to minimum eigenvalue; the other is based on the ratio of the average eigenvalue to minimum eigenvalue. Using some latest random matrix theories (RMT), we quantify the distributions of these ratios and derive the probabilities of false alarm and probabilities of detection for the proposed algorithms. We also find the thresholds of the methods for a given probability of false alarm. The proposed methods overcome the noise uncertainty problem, and can even perform better than the ideal energy detection when the signals to be detected are highly correlated. The methods can be used for various signal detection applications without requiring the knowledge of signal, channel and noise power. Simulations based on randomly generated signals, wireless microphone signals and captured ATSC DTV signals are presented to verify the effectiveness of the proposed methods.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Broadcasting. Videocommunications. Audiovisual</subject><subject>Channels</subject><subject>Cognitive radio</subject><subject>Covariance matrix</subject><subject>Detection</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>False alarms</subject><subject>Frequency</subject><subject>IEEE 802.22 wireless regional area networks (WRAN)</subject><subject>Information, signal and communications theory</subject><subject>Matrix theory</subject><subject>Microphones</subject><subject>Noise</subject><subject>Radio</subject><subject>Radiocommunication specific techniques</subject><subject>Radiocommunications</subject><subject>random matrix</subject><subject>sensing algorithm</subject><subject>Signal and communications theory</subject><subject>Signal detection</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>spectrum sensing</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Television</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Uncertainty</subject><subject>Wireless sensor networks</subject><subject>Working environment noise</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90DtPwzAQwHELgUR5fAIYIiRgSjnHjh8bqCoPiaoLzJaTnItRmhQ7QeLbYyhiYGDycL87yX9CTilMKQV99TRbLhbTAkBPQUxBAodih0xoWaocVCl3ySTNIBdSqn1yEOMrQDKMTcj13K-we7ftiHllIzZZ3GA9hHGdReyi71aZbVd98MPLOmauD1ndrzo_-HfMgm18f0T2nG0jHv-8h-T5dv40u88fl3cPs5vHvOZMDjmVvBJWs0YVSlRVU6ErpFCC0UZqdJJraWXltAVkwHXlGmmdFtwqyhvBG3ZILrd3N6F_GzEOZu1jjW1rO-zHaJTQimshRJIX_0omGJcaIMGzP_C1H0OXfmFUKTQtgJcJ8S2qQx9jQGc2wa9t-DAUzFd9813ffNU3IMy2flo7_7ltY21bF2xX-_i7W6QeBSt5cidb5xHxd1yC0iWV7BPo7419</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>YONGHONG ZENG</creator><creator>LIANG, Ying-Chang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090601</creationdate><title>Eigenvalue-based spectrum sensing algorithms for cognitive radio</title><author>YONGHONG ZENG ; LIANG, Ying-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-174b6a93d8286bbdbef2768631d79ef7497a7bf9a0e3049bfd7af964a814d64d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Broadcasting. Videocommunications. Audiovisual</topic><topic>Channels</topic><topic>Cognitive radio</topic><topic>Covariance matrix</topic><topic>Detection</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>False alarms</topic><topic>Frequency</topic><topic>IEEE 802.22 wireless regional area networks (WRAN)</topic><topic>Information, signal and communications theory</topic><topic>Matrix theory</topic><topic>Microphones</topic><topic>Noise</topic><topic>Radio</topic><topic>Radiocommunication specific techniques</topic><topic>Radiocommunications</topic><topic>random matrix</topic><topic>sensing algorithm</topic><topic>Signal and communications theory</topic><topic>Signal detection</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>spectrum sensing</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Television</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Uncertainty</topic><topic>Wireless sensor networks</topic><topic>Working environment noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YONGHONG ZENG</creatorcontrib><creatorcontrib>LIANG, Ying-Chang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YONGHONG ZENG</au><au>LIANG, Ying-Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalue-based spectrum sensing algorithms for cognitive radio</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>57</volume><issue>6</issue><spage>1784</spage><epage>1793</epage><pages>1784-1793</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Spectrum sensing is a fundamental component in a cognitive radio. In this paper, we propose new sensing methods based on the eigenvalues of the covariance matrix of signals received at the secondary users. In particular, two sensing algorithms are suggested, one is based on the ratio of the maximum eigenvalue to minimum eigenvalue; the other is based on the ratio of the average eigenvalue to minimum eigenvalue. Using some latest random matrix theories (RMT), we quantify the distributions of these ratios and derive the probabilities of false alarm and probabilities of detection for the proposed algorithms. We also find the thresholds of the methods for a given probability of false alarm. The proposed methods overcome the noise uncertainty problem, and can even perform better than the ideal energy detection when the signals to be detected are highly correlated. The methods can be used for various signal detection applications without requiring the knowledge of signal, channel and noise power. Simulations based on randomly generated signals, wireless microphone signals and captured ATSC DTV signals are presented to verify the effectiveness of the proposed methods.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2009.06.070402</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2009-06, Vol.57 (6), p.1784-1793 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_pascalfrancis_primary_21742354 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Broadcasting. Videocommunications. Audiovisual Channels Cognitive radio Covariance matrix Detection Detection, estimation, filtering, equalization, prediction Eigenvalues Eigenvalues and eigenfunctions Exact sciences and technology False alarms Frequency IEEE 802.22 wireless regional area networks (WRAN) Information, signal and communications theory Matrix theory Microphones Noise Radio Radiocommunication specific techniques Radiocommunications random matrix sensing algorithm Signal and communications theory Signal detection Signal to noise ratio Signal, noise spectrum sensing Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Television Transmission and modulation (techniques and equipments) Uncertainty Wireless sensor networks Working environment noise |
title | Eigenvalue-based spectrum sensing algorithms for cognitive radio |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A03%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalue-based%20spectrum%20sensing%20algorithms%20for%20cognitive%20radio&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=YONGHONG%20ZENG&rft.date=2009-06-01&rft.volume=57&rft.issue=6&rft.spage=1784&rft.epage=1793&rft.pages=1784-1793&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2009.06.070402&rft_dat=%3Cproquest_RIE%3E2291900201%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856912045&rft_id=info:pmid/&rft_ieee_id=5089517&rfr_iscdi=true |