Eigenvalue-based spectrum sensing algorithms for cognitive radio

Spectrum sensing is a fundamental component in a cognitive radio. In this paper, we propose new sensing methods based on the eigenvalues of the covariance matrix of signals received at the secondary users. In particular, two sensing algorithms are suggested, one is based on the ratio of the maximum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2009-06, Vol.57 (6), p.1784-1793
Hauptverfasser: YONGHONG ZENG, LIANG, Ying-Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1793
container_issue 6
container_start_page 1784
container_title IEEE transactions on communications
container_volume 57
creator YONGHONG ZENG
LIANG, Ying-Chang
description Spectrum sensing is a fundamental component in a cognitive radio. In this paper, we propose new sensing methods based on the eigenvalues of the covariance matrix of signals received at the secondary users. In particular, two sensing algorithms are suggested, one is based on the ratio of the maximum eigenvalue to minimum eigenvalue; the other is based on the ratio of the average eigenvalue to minimum eigenvalue. Using some latest random matrix theories (RMT), we quantify the distributions of these ratios and derive the probabilities of false alarm and probabilities of detection for the proposed algorithms. We also find the thresholds of the methods for a given probability of false alarm. The proposed methods overcome the noise uncertainty problem, and can even perform better than the ideal energy detection when the signals to be detected are highly correlated. The methods can be used for various signal detection applications without requiring the knowledge of signal, channel and noise power. Simulations based on randomly generated signals, wireless microphone signals and captured ATSC DTV signals are presented to verify the effectiveness of the proposed methods.
doi_str_mv 10.1109/TCOMM.2009.06.070402
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_21742354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5089517</ieee_id><sourcerecordid>2291900201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-174b6a93d8286bbdbef2768631d79ef7497a7bf9a0e3049bfd7af964a814d64d3</originalsourceid><addsrcrecordid>eNp90DtPwzAQwHELgUR5fAIYIiRgSjnHjh8bqCoPiaoLzJaTnItRmhQ7QeLbYyhiYGDycL87yX9CTilMKQV99TRbLhbTAkBPQUxBAodih0xoWaocVCl3ySTNIBdSqn1yEOMrQDKMTcj13K-we7ftiHllIzZZ3GA9hHGdReyi71aZbVd98MPLOmauD1ndrzo_-HfMgm18f0T2nG0jHv-8h-T5dv40u88fl3cPs5vHvOZMDjmVvBJWs0YVSlRVU6ErpFCC0UZqdJJraWXltAVkwHXlGmmdFtwqyhvBG3ZILrd3N6F_GzEOZu1jjW1rO-zHaJTQimshRJIX_0omGJcaIMGzP_C1H0OXfmFUKTQtgJcJ8S2qQx9jQGc2wa9t-DAUzFd9813ffNU3IMy2flo7_7ltY21bF2xX-_i7W6QeBSt5cidb5xHxd1yC0iWV7BPo7419</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856912045</pqid></control><display><type>article</type><title>Eigenvalue-based spectrum sensing algorithms for cognitive radio</title><source>IEEE Electronic Library (IEL)</source><creator>YONGHONG ZENG ; LIANG, Ying-Chang</creator><creatorcontrib>YONGHONG ZENG ; LIANG, Ying-Chang</creatorcontrib><description>Spectrum sensing is a fundamental component in a cognitive radio. In this paper, we propose new sensing methods based on the eigenvalues of the covariance matrix of signals received at the secondary users. In particular, two sensing algorithms are suggested, one is based on the ratio of the maximum eigenvalue to minimum eigenvalue; the other is based on the ratio of the average eigenvalue to minimum eigenvalue. Using some latest random matrix theories (RMT), we quantify the distributions of these ratios and derive the probabilities of false alarm and probabilities of detection for the proposed algorithms. We also find the thresholds of the methods for a given probability of false alarm. The proposed methods overcome the noise uncertainty problem, and can even perform better than the ideal energy detection when the signals to be detected are highly correlated. The methods can be used for various signal detection applications without requiring the knowledge of signal, channel and noise power. Simulations based on randomly generated signals, wireless microphone signals and captured ATSC DTV signals are presented to verify the effectiveness of the proposed methods.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2009.06.070402</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Broadcasting. Videocommunications. Audiovisual ; Channels ; Cognitive radio ; Covariance matrix ; Detection ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; False alarms ; Frequency ; IEEE 802.22 wireless regional area networks (WRAN) ; Information, signal and communications theory ; Matrix theory ; Microphones ; Noise ; Radio ; Radiocommunication specific techniques ; Radiocommunications ; random matrix ; sensing algorithm ; Signal and communications theory ; Signal detection ; Signal to noise ratio ; Signal, noise ; spectrum sensing ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Television ; Transmission and modulation (techniques and equipments) ; Uncertainty ; Wireless sensor networks ; Working environment noise</subject><ispartof>IEEE transactions on communications, 2009-06, Vol.57 (6), p.1784-1793</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-174b6a93d8286bbdbef2768631d79ef7497a7bf9a0e3049bfd7af964a814d64d3</citedby><cites>FETCH-LOGICAL-c437t-174b6a93d8286bbdbef2768631d79ef7497a7bf9a0e3049bfd7af964a814d64d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5089517$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5089517$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21742354$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>YONGHONG ZENG</creatorcontrib><creatorcontrib>LIANG, Ying-Chang</creatorcontrib><title>Eigenvalue-based spectrum sensing algorithms for cognitive radio</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Spectrum sensing is a fundamental component in a cognitive radio. In this paper, we propose new sensing methods based on the eigenvalues of the covariance matrix of signals received at the secondary users. In particular, two sensing algorithms are suggested, one is based on the ratio of the maximum eigenvalue to minimum eigenvalue; the other is based on the ratio of the average eigenvalue to minimum eigenvalue. Using some latest random matrix theories (RMT), we quantify the distributions of these ratios and derive the probabilities of false alarm and probabilities of detection for the proposed algorithms. We also find the thresholds of the methods for a given probability of false alarm. The proposed methods overcome the noise uncertainty problem, and can even perform better than the ideal energy detection when the signals to be detected are highly correlated. The methods can be used for various signal detection applications without requiring the knowledge of signal, channel and noise power. Simulations based on randomly generated signals, wireless microphone signals and captured ATSC DTV signals are presented to verify the effectiveness of the proposed methods.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Broadcasting. Videocommunications. Audiovisual</subject><subject>Channels</subject><subject>Cognitive radio</subject><subject>Covariance matrix</subject><subject>Detection</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>False alarms</subject><subject>Frequency</subject><subject>IEEE 802.22 wireless regional area networks (WRAN)</subject><subject>Information, signal and communications theory</subject><subject>Matrix theory</subject><subject>Microphones</subject><subject>Noise</subject><subject>Radio</subject><subject>Radiocommunication specific techniques</subject><subject>Radiocommunications</subject><subject>random matrix</subject><subject>sensing algorithm</subject><subject>Signal and communications theory</subject><subject>Signal detection</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>spectrum sensing</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Television</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Uncertainty</subject><subject>Wireless sensor networks</subject><subject>Working environment noise</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90DtPwzAQwHELgUR5fAIYIiRgSjnHjh8bqCoPiaoLzJaTnItRmhQ7QeLbYyhiYGDycL87yX9CTilMKQV99TRbLhbTAkBPQUxBAodih0xoWaocVCl3ySTNIBdSqn1yEOMrQDKMTcj13K-we7ftiHllIzZZ3GA9hHGdReyi71aZbVd98MPLOmauD1ndrzo_-HfMgm18f0T2nG0jHv-8h-T5dv40u88fl3cPs5vHvOZMDjmVvBJWs0YVSlRVU6ErpFCC0UZqdJJraWXltAVkwHXlGmmdFtwqyhvBG3ZILrd3N6F_GzEOZu1jjW1rO-zHaJTQimshRJIX_0omGJcaIMGzP_C1H0OXfmFUKTQtgJcJ8S2qQx9jQGc2wa9t-DAUzFd9813ffNU3IMy2flo7_7ltY21bF2xX-_i7W6QeBSt5cidb5xHxd1yC0iWV7BPo7419</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>YONGHONG ZENG</creator><creator>LIANG, Ying-Chang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090601</creationdate><title>Eigenvalue-based spectrum sensing algorithms for cognitive radio</title><author>YONGHONG ZENG ; LIANG, Ying-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-174b6a93d8286bbdbef2768631d79ef7497a7bf9a0e3049bfd7af964a814d64d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Broadcasting. Videocommunications. Audiovisual</topic><topic>Channels</topic><topic>Cognitive radio</topic><topic>Covariance matrix</topic><topic>Detection</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>False alarms</topic><topic>Frequency</topic><topic>IEEE 802.22 wireless regional area networks (WRAN)</topic><topic>Information, signal and communications theory</topic><topic>Matrix theory</topic><topic>Microphones</topic><topic>Noise</topic><topic>Radio</topic><topic>Radiocommunication specific techniques</topic><topic>Radiocommunications</topic><topic>random matrix</topic><topic>sensing algorithm</topic><topic>Signal and communications theory</topic><topic>Signal detection</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>spectrum sensing</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Television</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Uncertainty</topic><topic>Wireless sensor networks</topic><topic>Working environment noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YONGHONG ZENG</creatorcontrib><creatorcontrib>LIANG, Ying-Chang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YONGHONG ZENG</au><au>LIANG, Ying-Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalue-based spectrum sensing algorithms for cognitive radio</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>57</volume><issue>6</issue><spage>1784</spage><epage>1793</epage><pages>1784-1793</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Spectrum sensing is a fundamental component in a cognitive radio. In this paper, we propose new sensing methods based on the eigenvalues of the covariance matrix of signals received at the secondary users. In particular, two sensing algorithms are suggested, one is based on the ratio of the maximum eigenvalue to minimum eigenvalue; the other is based on the ratio of the average eigenvalue to minimum eigenvalue. Using some latest random matrix theories (RMT), we quantify the distributions of these ratios and derive the probabilities of false alarm and probabilities of detection for the proposed algorithms. We also find the thresholds of the methods for a given probability of false alarm. The proposed methods overcome the noise uncertainty problem, and can even perform better than the ideal energy detection when the signals to be detected are highly correlated. The methods can be used for various signal detection applications without requiring the knowledge of signal, channel and noise power. Simulations based on randomly generated signals, wireless microphone signals and captured ATSC DTV signals are presented to verify the effectiveness of the proposed methods.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2009.06.070402</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2009-06, Vol.57 (6), p.1784-1793
issn 0090-6778
1558-0857
language eng
recordid cdi_pascalfrancis_primary_21742354
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Broadcasting. Videocommunications. Audiovisual
Channels
Cognitive radio
Covariance matrix
Detection
Detection, estimation, filtering, equalization, prediction
Eigenvalues
Eigenvalues and eigenfunctions
Exact sciences and technology
False alarms
Frequency
IEEE 802.22 wireless regional area networks (WRAN)
Information, signal and communications theory
Matrix theory
Microphones
Noise
Radio
Radiocommunication specific techniques
Radiocommunications
random matrix
sensing algorithm
Signal and communications theory
Signal detection
Signal to noise ratio
Signal, noise
spectrum sensing
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Television
Transmission and modulation (techniques and equipments)
Uncertainty
Wireless sensor networks
Working environment noise
title Eigenvalue-based spectrum sensing algorithms for cognitive radio
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A03%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalue-based%20spectrum%20sensing%20algorithms%20for%20cognitive%20radio&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=YONGHONG%20ZENG&rft.date=2009-06-01&rft.volume=57&rft.issue=6&rft.spage=1784&rft.epage=1793&rft.pages=1784-1793&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2009.06.070402&rft_dat=%3Cproquest_RIE%3E2291900201%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856912045&rft_id=info:pmid/&rft_ieee_id=5089517&rfr_iscdi=true