A Contraction Theory Approach to Stochastic Incremental Stability

We investigate the incremental stability properties of Ito stochastic dynamical systems. Specifically, we derive a stochastic version of nonlinear contraction theory that provides a bound on the mean square distance between any two trajectories of a stochastically contracting system. This bound can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2009-04, Vol.54 (4), p.816-820
Hauptverfasser: Quang-Cuong Pham, Tabareau, N., Slotine, J.-J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 820
container_issue 4
container_start_page 816
container_title IEEE transactions on automatic control
container_volume 54
creator Quang-Cuong Pham
Tabareau, N.
Slotine, J.-J.
description We investigate the incremental stability properties of Ito stochastic dynamical systems. Specifically, we derive a stochastic version of nonlinear contraction theory that provides a bound on the mean square distance between any two trajectories of a stochastically contracting system. This bound can be expressed as a function of the noise intensity and the contraction rate of the noise-free system. We illustrate these results in the contexts of nonlinear observers design and stochastic synchronization.
doi_str_mv 10.1109/TAC.2008.2009619
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_21741763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4806161</ieee_id><sourcerecordid>2316742961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-a97072d9fb95bff9f80319528f3ded23ce752e1d270279f6449a2764db70f24f3</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhkVpoW6Se6GXpdA2EDaVRlp9HBfTJgFDD3HPQtZKWGG9ciW54H9fLTY-9JDLiBk9845GL0IfCb4nBKvv6355DxjLOShO1Bu0IF0nW-iAvkULjIlsFUj-Hn3I-aWmnDGyQH3fLONUkrElxKlZb11Mx6bf71M0dtuU2DyXaLcml2Cbp8kmt3NTMWMtm00YQzleo3fejNndnM8r9Pvnj_XysV39enha9qvWMsVKa5TAAgblN6rbeK-8xJSoDqSngxuAWic6cGQAgUEoX1-nDAjOho3AHpinV-jupLs1o96nsDPpqKMJ-rFf6TClYDTGjHPg7C-p9LcTXRf5c3C56F3I1o2jmVw8ZK0w5QCYdZX8-ipJGcOCi1ny9lWQVAiqaEcr-vk_9CUe0lS_R0tOQDFJRYXwCbIp5pycv2xFsJ491dVTPXuqz57Wli9nXZOtGX0ykw350gdEMCL4PP_TiQvOucs1k5gTTug_dO6meg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861294837</pqid></control><display><type>article</type><title>A Contraction Theory Approach to Stochastic Incremental Stability</title><source>IEEE Electronic Library (IEL)</source><creator>Quang-Cuong Pham ; Tabareau, N. ; Slotine, J.-J.</creator><creatorcontrib>Quang-Cuong Pham ; Tabareau, N. ; Slotine, J.-J.</creatorcontrib><description>We investigate the incremental stability properties of Ito stochastic dynamical systems. Specifically, we derive a stochastic version of nonlinear contraction theory that provides a bound on the mean square distance between any two trajectories of a stochastically contracting system. This bound can be expressed as a function of the noise intensity and the contraction rate of the noise-free system. We illustrate these results in the contexts of nonlinear observers design and stochastic synchronization.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2008.2009619</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system analysis ; Control systems ; Control theory. Systems ; Convergence ; Design engineering ; Dynamical systems ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Incremental stability ; Mean square values ; Modelling and identification ; nonlinear contraction theory ; Nonlinear dynamics ; Nonlinear systems ; Nonlinearity ; Stability ; Stability analysis ; Standards development ; Stochastic processes ; Stochastic resonance ; stochastic stability ; Stochastic systems ; Stochasticity ; Symmetric matrices ; Synchronization</subject><ispartof>IEEE transactions on automatic control, 2009-04, Vol.54 (4), p.816-820</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-a97072d9fb95bff9f80319528f3ded23ce752e1d270279f6449a2764db70f24f3</citedby><cites>FETCH-LOGICAL-c494t-a97072d9fb95bff9f80319528f3ded23ce752e1d270279f6449a2764db70f24f3</cites><orcidid>0000-0003-3366-2273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4806161$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4806161$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21741763$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/inria-00466264$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Quang-Cuong Pham</creatorcontrib><creatorcontrib>Tabareau, N.</creatorcontrib><creatorcontrib>Slotine, J.-J.</creatorcontrib><title>A Contraction Theory Approach to Stochastic Incremental Stability</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We investigate the incremental stability properties of Ito stochastic dynamical systems. Specifically, we derive a stochastic version of nonlinear contraction theory that provides a bound on the mean square distance between any two trajectories of a stochastically contracting system. This bound can be expressed as a function of the noise intensity and the contraction rate of the noise-free system. We illustrate these results in the contexts of nonlinear observers design and stochastic synchronization.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Convergence</subject><subject>Design engineering</subject><subject>Dynamical systems</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Incremental stability</subject><subject>Mean square values</subject><subject>Modelling and identification</subject><subject>nonlinear contraction theory</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Standards development</subject><subject>Stochastic processes</subject><subject>Stochastic resonance</subject><subject>stochastic stability</subject><subject>Stochastic systems</subject><subject>Stochasticity</subject><subject>Symmetric matrices</subject><subject>Synchronization</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1rGzEQhkVpoW6Se6GXpdA2EDaVRlp9HBfTJgFDD3HPQtZKWGG9ciW54H9fLTY-9JDLiBk9845GL0IfCb4nBKvv6355DxjLOShO1Bu0IF0nW-iAvkULjIlsFUj-Hn3I-aWmnDGyQH3fLONUkrElxKlZb11Mx6bf71M0dtuU2DyXaLcml2Cbp8kmt3NTMWMtm00YQzleo3fejNndnM8r9Pvnj_XysV39enha9qvWMsVKa5TAAgblN6rbeK-8xJSoDqSngxuAWic6cGQAgUEoX1-nDAjOho3AHpinV-jupLs1o96nsDPpqKMJ-rFf6TClYDTGjHPg7C-p9LcTXRf5c3C56F3I1o2jmVw8ZK0w5QCYdZX8-ipJGcOCi1ny9lWQVAiqaEcr-vk_9CUe0lS_R0tOQDFJRYXwCbIp5pycv2xFsJ491dVTPXuqz57Wli9nXZOtGX0ykw350gdEMCL4PP_TiQvOucs1k5gTTug_dO6meg</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Quang-Cuong Pham</creator><creator>Tabareau, N.</creator><creator>Slotine, J.-J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3366-2273</orcidid></search><sort><creationdate>20090401</creationdate><title>A Contraction Theory Approach to Stochastic Incremental Stability</title><author>Quang-Cuong Pham ; Tabareau, N. ; Slotine, J.-J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-a97072d9fb95bff9f80319528f3ded23ce752e1d270279f6449a2764db70f24f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Convergence</topic><topic>Design engineering</topic><topic>Dynamical systems</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Incremental stability</topic><topic>Mean square values</topic><topic>Modelling and identification</topic><topic>nonlinear contraction theory</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Standards development</topic><topic>Stochastic processes</topic><topic>Stochastic resonance</topic><topic>stochastic stability</topic><topic>Stochastic systems</topic><topic>Stochasticity</topic><topic>Symmetric matrices</topic><topic>Synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quang-Cuong Pham</creatorcontrib><creatorcontrib>Tabareau, N.</creatorcontrib><creatorcontrib>Slotine, J.-J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quang-Cuong Pham</au><au>Tabareau, N.</au><au>Slotine, J.-J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Contraction Theory Approach to Stochastic Incremental Stability</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>54</volume><issue>4</issue><spage>816</spage><epage>820</epage><pages>816-820</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We investigate the incremental stability properties of Ito stochastic dynamical systems. Specifically, we derive a stochastic version of nonlinear contraction theory that provides a bound on the mean square distance between any two trajectories of a stochastically contracting system. This bound can be expressed as a function of the noise intensity and the contraction rate of the noise-free system. We illustrate these results in the contexts of nonlinear observers design and stochastic synchronization.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2008.2009619</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3366-2273</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2009-04, Vol.54 (4), p.816-820
issn 0018-9286
1558-2523
language eng
recordid cdi_pascalfrancis_primary_21741763
source IEEE Electronic Library (IEL)
subjects Applied sciences
Computer science
control theory
systems
Control system analysis
Control systems
Control theory. Systems
Convergence
Design engineering
Dynamical systems
Eigenvalues and eigenfunctions
Exact sciences and technology
Incremental stability
Mean square values
Modelling and identification
nonlinear contraction theory
Nonlinear dynamics
Nonlinear systems
Nonlinearity
Stability
Stability analysis
Standards development
Stochastic processes
Stochastic resonance
stochastic stability
Stochastic systems
Stochasticity
Symmetric matrices
Synchronization
title A Contraction Theory Approach to Stochastic Incremental Stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Contraction%20Theory%20Approach%20to%20Stochastic%20Incremental%20Stability&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Quang-Cuong%20Pham&rft.date=2009-04-01&rft.volume=54&rft.issue=4&rft.spage=816&rft.epage=820&rft.pages=816-820&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2008.2009619&rft_dat=%3Cproquest_RIE%3E2316742961%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861294837&rft_id=info:pmid/&rft_ieee_id=4806161&rfr_iscdi=true