A Contraction Theory Approach to Stochastic Incremental Stability
We investigate the incremental stability properties of Ito stochastic dynamical systems. Specifically, we derive a stochastic version of nonlinear contraction theory that provides a bound on the mean square distance between any two trajectories of a stochastically contracting system. This bound can...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2009-04, Vol.54 (4), p.816-820 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 820 |
---|---|
container_issue | 4 |
container_start_page | 816 |
container_title | IEEE transactions on automatic control |
container_volume | 54 |
creator | Quang-Cuong Pham Tabareau, N. Slotine, J.-J. |
description | We investigate the incremental stability properties of Ito stochastic dynamical systems. Specifically, we derive a stochastic version of nonlinear contraction theory that provides a bound on the mean square distance between any two trajectories of a stochastically contracting system. This bound can be expressed as a function of the noise intensity and the contraction rate of the noise-free system. We illustrate these results in the contexts of nonlinear observers design and stochastic synchronization. |
doi_str_mv | 10.1109/TAC.2008.2009619 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_21741763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4806161</ieee_id><sourcerecordid>2316742961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-a97072d9fb95bff9f80319528f3ded23ce752e1d270279f6449a2764db70f24f3</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhkVpoW6Se6GXpdA2EDaVRlp9HBfTJgFDD3HPQtZKWGG9ciW54H9fLTY-9JDLiBk9845GL0IfCb4nBKvv6355DxjLOShO1Bu0IF0nW-iAvkULjIlsFUj-Hn3I-aWmnDGyQH3fLONUkrElxKlZb11Mx6bf71M0dtuU2DyXaLcml2Cbp8kmt3NTMWMtm00YQzleo3fejNndnM8r9Pvnj_XysV39enha9qvWMsVKa5TAAgblN6rbeK-8xJSoDqSngxuAWic6cGQAgUEoX1-nDAjOho3AHpinV-jupLs1o96nsDPpqKMJ-rFf6TClYDTGjHPg7C-p9LcTXRf5c3C56F3I1o2jmVw8ZK0w5QCYdZX8-ipJGcOCi1ny9lWQVAiqaEcr-vk_9CUe0lS_R0tOQDFJRYXwCbIp5pycv2xFsJ491dVTPXuqz57Wli9nXZOtGX0ykw350gdEMCL4PP_TiQvOucs1k5gTTug_dO6meg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861294837</pqid></control><display><type>article</type><title>A Contraction Theory Approach to Stochastic Incremental Stability</title><source>IEEE Electronic Library (IEL)</source><creator>Quang-Cuong Pham ; Tabareau, N. ; Slotine, J.-J.</creator><creatorcontrib>Quang-Cuong Pham ; Tabareau, N. ; Slotine, J.-J.</creatorcontrib><description>We investigate the incremental stability properties of Ito stochastic dynamical systems. Specifically, we derive a stochastic version of nonlinear contraction theory that provides a bound on the mean square distance between any two trajectories of a stochastically contracting system. This bound can be expressed as a function of the noise intensity and the contraction rate of the noise-free system. We illustrate these results in the contexts of nonlinear observers design and stochastic synchronization.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2008.2009619</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system analysis ; Control systems ; Control theory. Systems ; Convergence ; Design engineering ; Dynamical systems ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Incremental stability ; Mean square values ; Modelling and identification ; nonlinear contraction theory ; Nonlinear dynamics ; Nonlinear systems ; Nonlinearity ; Stability ; Stability analysis ; Standards development ; Stochastic processes ; Stochastic resonance ; stochastic stability ; Stochastic systems ; Stochasticity ; Symmetric matrices ; Synchronization</subject><ispartof>IEEE transactions on automatic control, 2009-04, Vol.54 (4), p.816-820</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-a97072d9fb95bff9f80319528f3ded23ce752e1d270279f6449a2764db70f24f3</citedby><cites>FETCH-LOGICAL-c494t-a97072d9fb95bff9f80319528f3ded23ce752e1d270279f6449a2764db70f24f3</cites><orcidid>0000-0003-3366-2273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4806161$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4806161$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21741763$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/inria-00466264$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Quang-Cuong Pham</creatorcontrib><creatorcontrib>Tabareau, N.</creatorcontrib><creatorcontrib>Slotine, J.-J.</creatorcontrib><title>A Contraction Theory Approach to Stochastic Incremental Stability</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We investigate the incremental stability properties of Ito stochastic dynamical systems. Specifically, we derive a stochastic version of nonlinear contraction theory that provides a bound on the mean square distance between any two trajectories of a stochastically contracting system. This bound can be expressed as a function of the noise intensity and the contraction rate of the noise-free system. We illustrate these results in the contexts of nonlinear observers design and stochastic synchronization.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Convergence</subject><subject>Design engineering</subject><subject>Dynamical systems</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Incremental stability</subject><subject>Mean square values</subject><subject>Modelling and identification</subject><subject>nonlinear contraction theory</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Standards development</subject><subject>Stochastic processes</subject><subject>Stochastic resonance</subject><subject>stochastic stability</subject><subject>Stochastic systems</subject><subject>Stochasticity</subject><subject>Symmetric matrices</subject><subject>Synchronization</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1rGzEQhkVpoW6Se6GXpdA2EDaVRlp9HBfTJgFDD3HPQtZKWGG9ciW54H9fLTY-9JDLiBk9845GL0IfCb4nBKvv6355DxjLOShO1Bu0IF0nW-iAvkULjIlsFUj-Hn3I-aWmnDGyQH3fLONUkrElxKlZb11Mx6bf71M0dtuU2DyXaLcml2Cbp8kmt3NTMWMtm00YQzleo3fejNndnM8r9Pvnj_XysV39enha9qvWMsVKa5TAAgblN6rbeK-8xJSoDqSngxuAWic6cGQAgUEoX1-nDAjOho3AHpinV-jupLs1o96nsDPpqKMJ-rFf6TClYDTGjHPg7C-p9LcTXRf5c3C56F3I1o2jmVw8ZK0w5QCYdZX8-ipJGcOCi1ny9lWQVAiqaEcr-vk_9CUe0lS_R0tOQDFJRYXwCbIp5pycv2xFsJ491dVTPXuqz57Wli9nXZOtGX0ykw350gdEMCL4PP_TiQvOucs1k5gTTug_dO6meg</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Quang-Cuong Pham</creator><creator>Tabareau, N.</creator><creator>Slotine, J.-J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3366-2273</orcidid></search><sort><creationdate>20090401</creationdate><title>A Contraction Theory Approach to Stochastic Incremental Stability</title><author>Quang-Cuong Pham ; Tabareau, N. ; Slotine, J.-J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-a97072d9fb95bff9f80319528f3ded23ce752e1d270279f6449a2764db70f24f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Convergence</topic><topic>Design engineering</topic><topic>Dynamical systems</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Incremental stability</topic><topic>Mean square values</topic><topic>Modelling and identification</topic><topic>nonlinear contraction theory</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Standards development</topic><topic>Stochastic processes</topic><topic>Stochastic resonance</topic><topic>stochastic stability</topic><topic>Stochastic systems</topic><topic>Stochasticity</topic><topic>Symmetric matrices</topic><topic>Synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quang-Cuong Pham</creatorcontrib><creatorcontrib>Tabareau, N.</creatorcontrib><creatorcontrib>Slotine, J.-J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quang-Cuong Pham</au><au>Tabareau, N.</au><au>Slotine, J.-J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Contraction Theory Approach to Stochastic Incremental Stability</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>54</volume><issue>4</issue><spage>816</spage><epage>820</epage><pages>816-820</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We investigate the incremental stability properties of Ito stochastic dynamical systems. Specifically, we derive a stochastic version of nonlinear contraction theory that provides a bound on the mean square distance between any two trajectories of a stochastically contracting system. This bound can be expressed as a function of the noise intensity and the contraction rate of the noise-free system. We illustrate these results in the contexts of nonlinear observers design and stochastic synchronization.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2008.2009619</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3366-2273</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2009-04, Vol.54 (4), p.816-820 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_pascalfrancis_primary_21741763 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Computer science control theory systems Control system analysis Control systems Control theory. Systems Convergence Design engineering Dynamical systems Eigenvalues and eigenfunctions Exact sciences and technology Incremental stability Mean square values Modelling and identification nonlinear contraction theory Nonlinear dynamics Nonlinear systems Nonlinearity Stability Stability analysis Standards development Stochastic processes Stochastic resonance stochastic stability Stochastic systems Stochasticity Symmetric matrices Synchronization |
title | A Contraction Theory Approach to Stochastic Incremental Stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Contraction%20Theory%20Approach%20to%20Stochastic%20Incremental%20Stability&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Quang-Cuong%20Pham&rft.date=2009-04-01&rft.volume=54&rft.issue=4&rft.spage=816&rft.epage=820&rft.pages=816-820&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2008.2009619&rft_dat=%3Cproquest_RIE%3E2316742961%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861294837&rft_id=info:pmid/&rft_ieee_id=4806161&rfr_iscdi=true |