Vertically tapered layers for optical applications fabricated using resist reflow
This paper reports on the IC-compatible fabrication of vertically tapered optical layers for use in linear variable optical filters (LVOF). The taper angle is fully defined by a mask design. Only one masked lithography step is required for defining strips in a photoresist with trenches etched therei...
Gespeichert in:
Veröffentlicht in: | Journal of micromechanics and microengineering 2009-07, Vol.19 (7), p.074014-074014 (9) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper reports on the IC-compatible fabrication of vertically tapered optical layers for use in linear variable optical filters (LVOF). The taper angle is fully defined by a mask design. Only one masked lithography step is required for defining strips in a photoresist with trenches etched therein of a density varying along the length of the strip. In a subsequent reflow, this patterned photoresist is planarized, resulting in a strip with a local thickness defined by the initial layer thickness and the trench density at that position before reflow. Hence a taper can be flexibly programmed by the mask design to be from 0.001 deg to 0.1 deg, which enables the simultaneous fabrication of tapered layers of different taper angles. The 3D pattern of resist structures is subsequently transferred into Si or SiO2 by appropriate etching. Complete LVOF fabrication involves CMOS-compatible deposition of a lower dielectric mirror using a stack of dielectrics on the wafer, tapered layer formation and deposition of the top dielectric mirror. Design principle, processing and simulation results plus experimental validation of the technique on the profile in the resist and after transfer of the taper into Si and SiO2 are presented. |
---|---|
ISSN: | 0960-1317 1361-6439 |
DOI: | 10.1088/0960-1317/19/7/074014 |