Itinerant electron magnetism in CaRu1−xMnxO3 (0 ≤ x ≤ 0.5)

The effect of Mn substitution in paramagnetic metal CaRuO3 was studied by magnetization and neutron diffraction measurements. Development of ferromagnetic order is observed for x > =0.2 in CaRu1-xMnxO3. For the sample with x = 0.4, the Curie temperature of ~160 K is obtained from the Arrott plot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2009-07, Vol.21 (29), p.296002-296002 (6)
Hauptverfasser: Kawanaka, H, Yokoyama, M, Noguchi, A, Bando, H, Nishihara, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 296002 (6)
container_issue 29
container_start_page 296002
container_title Journal of physics. Condensed matter
container_volume 21
creator Kawanaka, H
Yokoyama, M
Noguchi, A
Bando, H
Nishihara, Y
description The effect of Mn substitution in paramagnetic metal CaRuO3 was studied by magnetization and neutron diffraction measurements. Development of ferromagnetic order is observed for x > =0.2 in CaRu1-xMnxO3. For the sample with x = 0.4, the Curie temperature of ~160 K is obtained from the Arrott plot and the ratio of effective moment and saturation moment Peff/M(0) is estimated to be ~4.8. We further found that the magnetization is significantly suppressed with decreasing temperature T below ~90 K. In the neutron diffraction experiment at T = 15 K, we observed the evolution of a magnetic Bragg peak originating from the G-type antiferromagnetic order as well as the ferromagnetic one. This strongly suggests that both ferromagnetic and antiferromagnetic states are coexistent with each other at low temperatures. In the M(T)02 against T2 plot (here, M(T)0 is a spontaneous magnetization estimated from the Arrott plot), M(T)02 linearly increases with decreasing T2 in the ferromagnetic region between ~90 and 160 K. The ferromagnetic properties of the CaRu1-xMnxO3 system (x < =0.5) are well explained in terms of spin fluctuation theory based on the itinerant electron model rather than the localized spin model.
doi_str_mv 10.1088/0953-8984/21/29/296002
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_21726661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34829580</sourcerecordid><originalsourceid>FETCH-LOGICAL-i292t-e07c18d2f34f83232afb0c30c172968dcb2a848e829f2acdc22b67bea31e5f3b3</originalsourceid><addsrcrecordid>eNp1kc1KAzEQx4MoWKuvIHtR9LDtZLK7zd6UUrVQKYiCt5DNJhLZLzdbqG-gV5_BJ-uTmNrSiwjDzGF-8_UfQk4pDChwPoQ0ZiFPeTREOsTUWwKAe6RHWULDJOLP-6S3gw7JkXOvABBxFvXI1bSzlW5l1QW60Kpr6yoo5UulO-vKwFbBWD4s6Orja3lfLecsuIBg9fkdLH89DOLLY3JgZOH0yTb2ydPN5HF8F87mt9Px9Sy0mGIXahgpynM0LDKcIUNpMlAMFB35fXmuMpQ84ppjalCqXCFmySjTklEdG5axPjnf9G3a-m2hXSdK65QuClnpeuEEi3xpzMGDZ1tQOiUL429T1ommtaVs3wX6gUmSUM-FG87WzS67lkmsZfKcwFRstBRNbjxP__IUxPoH_9SxH0l1d30</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34829580</pqid></control><display><type>article</type><title>Itinerant electron magnetism in CaRu1−xMnxO3 (0 ≤ x ≤ 0.5)</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kawanaka, H ; Yokoyama, M ; Noguchi, A ; Bando, H ; Nishihara, Y</creator><creatorcontrib>Kawanaka, H ; Yokoyama, M ; Noguchi, A ; Bando, H ; Nishihara, Y</creatorcontrib><description>The effect of Mn substitution in paramagnetic metal CaRuO3 was studied by magnetization and neutron diffraction measurements. Development of ferromagnetic order is observed for x &gt; =0.2 in CaRu1-xMnxO3. For the sample with x = 0.4, the Curie temperature of ~160 K is obtained from the Arrott plot and the ratio of effective moment and saturation moment Peff/M(0) is estimated to be ~4.8. We further found that the magnetization is significantly suppressed with decreasing temperature T below ~90 K. In the neutron diffraction experiment at T = 15 K, we observed the evolution of a magnetic Bragg peak originating from the G-type antiferromagnetic order as well as the ferromagnetic one. This strongly suggests that both ferromagnetic and antiferromagnetic states are coexistent with each other at low temperatures. In the M(T)02 against T2 plot (here, M(T)0 is a spontaneous magnetization estimated from the Arrott plot), M(T)02 linearly increases with decreasing T2 in the ferromagnetic region between ~90 and 160 K. The ferromagnetic properties of the CaRu1-xMnxO3 system (x &lt; =0.5) are well explained in terms of spin fluctuation theory based on the itinerant electron model rather than the localized spin model.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/21/29/296002</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; Magnetic properties and materials ; Magnetotransport phenomena, materials for magnetotransport ; Manganites ; Physics</subject><ispartof>Journal of physics. Condensed matter, 2009-07, Vol.21 (29), p.296002-296002 (6)</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/21/29/296002/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53805,53885</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21726661$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kawanaka, H</creatorcontrib><creatorcontrib>Yokoyama, M</creatorcontrib><creatorcontrib>Noguchi, A</creatorcontrib><creatorcontrib>Bando, H</creatorcontrib><creatorcontrib>Nishihara, Y</creatorcontrib><title>Itinerant electron magnetism in CaRu1−xMnxO3 (0 ≤ x ≤ 0.5)</title><title>Journal of physics. Condensed matter</title><description>The effect of Mn substitution in paramagnetic metal CaRuO3 was studied by magnetization and neutron diffraction measurements. Development of ferromagnetic order is observed for x &gt; =0.2 in CaRu1-xMnxO3. For the sample with x = 0.4, the Curie temperature of ~160 K is obtained from the Arrott plot and the ratio of effective moment and saturation moment Peff/M(0) is estimated to be ~4.8. We further found that the magnetization is significantly suppressed with decreasing temperature T below ~90 K. In the neutron diffraction experiment at T = 15 K, we observed the evolution of a magnetic Bragg peak originating from the G-type antiferromagnetic order as well as the ferromagnetic one. This strongly suggests that both ferromagnetic and antiferromagnetic states are coexistent with each other at low temperatures. In the M(T)02 against T2 plot (here, M(T)0 is a spontaneous magnetization estimated from the Arrott plot), M(T)02 linearly increases with decreasing T2 in the ferromagnetic region between ~90 and 160 K. The ferromagnetic properties of the CaRu1-xMnxO3 system (x &lt; =0.5) are well explained in terms of spin fluctuation theory based on the itinerant electron model rather than the localized spin model.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>Magnetic properties and materials</subject><subject>Magnetotransport phenomena, materials for magnetotransport</subject><subject>Manganites</subject><subject>Physics</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kc1KAzEQx4MoWKuvIHtR9LDtZLK7zd6UUrVQKYiCt5DNJhLZLzdbqG-gV5_BJ-uTmNrSiwjDzGF-8_UfQk4pDChwPoQ0ZiFPeTREOsTUWwKAe6RHWULDJOLP-6S3gw7JkXOvABBxFvXI1bSzlW5l1QW60Kpr6yoo5UulO-vKwFbBWD4s6Orja3lfLecsuIBg9fkdLH89DOLLY3JgZOH0yTb2ydPN5HF8F87mt9Px9Sy0mGIXahgpynM0LDKcIUNpMlAMFB35fXmuMpQ84ppjalCqXCFmySjTklEdG5axPjnf9G3a-m2hXSdK65QuClnpeuEEi3xpzMGDZ1tQOiUL429T1ommtaVs3wX6gUmSUM-FG87WzS67lkmsZfKcwFRstBRNbjxP__IUxPoH_9SxH0l1d30</recordid><startdate>20090722</startdate><enddate>20090722</enddate><creator>Kawanaka, H</creator><creator>Yokoyama, M</creator><creator>Noguchi, A</creator><creator>Bando, H</creator><creator>Nishihara, Y</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090722</creationdate><title>Itinerant electron magnetism in CaRu1−xMnxO3 (0 ≤ x ≤ 0.5)</title><author>Kawanaka, H ; Yokoyama, M ; Noguchi, A ; Bando, H ; Nishihara, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i292t-e07c18d2f34f83232afb0c30c172968dcb2a848e829f2acdc22b67bea31e5f3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>Magnetic properties and materials</topic><topic>Magnetotransport phenomena, materials for magnetotransport</topic><topic>Manganites</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawanaka, H</creatorcontrib><creatorcontrib>Yokoyama, M</creatorcontrib><creatorcontrib>Noguchi, A</creatorcontrib><creatorcontrib>Bando, H</creatorcontrib><creatorcontrib>Nishihara, Y</creatorcontrib><collection>Pascal-Francis</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawanaka, H</au><au>Yokoyama, M</au><au>Noguchi, A</au><au>Bando, H</au><au>Nishihara, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Itinerant electron magnetism in CaRu1−xMnxO3 (0 ≤ x ≤ 0.5)</atitle><jtitle>Journal of physics. Condensed matter</jtitle><date>2009-07-22</date><risdate>2009</risdate><volume>21</volume><issue>29</issue><spage>296002</spage><epage>296002 (6)</epage><pages>296002-296002 (6)</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>The effect of Mn substitution in paramagnetic metal CaRuO3 was studied by magnetization and neutron diffraction measurements. Development of ferromagnetic order is observed for x &gt; =0.2 in CaRu1-xMnxO3. For the sample with x = 0.4, the Curie temperature of ~160 K is obtained from the Arrott plot and the ratio of effective moment and saturation moment Peff/M(0) is estimated to be ~4.8. We further found that the magnetization is significantly suppressed with decreasing temperature T below ~90 K. In the neutron diffraction experiment at T = 15 K, we observed the evolution of a magnetic Bragg peak originating from the G-type antiferromagnetic order as well as the ferromagnetic one. This strongly suggests that both ferromagnetic and antiferromagnetic states are coexistent with each other at low temperatures. In the M(T)02 against T2 plot (here, M(T)0 is a spontaneous magnetization estimated from the Arrott plot), M(T)02 linearly increases with decreasing T2 in the ferromagnetic region between ~90 and 160 K. The ferromagnetic properties of the CaRu1-xMnxO3 system (x &lt; =0.5) are well explained in terms of spin fluctuation theory based on the itinerant electron model rather than the localized spin model.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0953-8984/21/29/296002</doi></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2009-07, Vol.21 (29), p.296002-296002 (6)
issn 0953-8984
1361-648X
language eng
recordid cdi_pascalfrancis_primary_21726661
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Exact sciences and technology
Magnetic properties and materials
Magnetotransport phenomena, materials for magnetotransport
Manganites
Physics
title Itinerant electron magnetism in CaRu1−xMnxO3 (0 ≤ x ≤ 0.5)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Itinerant%20electron%20magnetism%20in%20CaRu1%E2%88%92xMnxO3%20(0%20%E2%89%A4%20x%20%E2%89%A4%200.5)&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Kawanaka,%20H&rft.date=2009-07-22&rft.volume=21&rft.issue=29&rft.spage=296002&rft.epage=296002%20(6)&rft.pages=296002-296002%20(6)&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/21/29/296002&rft_dat=%3Cproquest_pasca%3E34829580%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34829580&rft_id=info:pmid/&rfr_iscdi=true