Oscillation and interlacing for various spectra of the p -Laplacian

We consider the eigenvalue problem − Δ p u = ( λ r − q ) | u | p − 1 sgn u , a.e. on  ( 0 , b ) , where b > 0 , p > 1 , Δ p is the p -Laplacian, q , r ∈ L 1 ( 0 , b ) , r > 0 , and λ ∈ R . A variety of boundary conditions will be imposed at 0 and b , but the main focus is on Dirichlet, Neum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2009-10, Vol.71 (7), p.2780-2791
Hauptverfasser: Binding, Paul A., Rynne, Bryan P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2791
container_issue 7
container_start_page 2780
container_title Nonlinear analysis
container_volume 71
creator Binding, Paul A.
Rynne, Bryan P.
description We consider the eigenvalue problem − Δ p u = ( λ r − q ) | u | p − 1 sgn u , a.e. on  ( 0 , b ) , where b > 0 , p > 1 , Δ p is the p -Laplacian, q , r ∈ L 1 ( 0 , b ) , r > 0 , and λ ∈ R . A variety of boundary conditions will be imposed at 0 and b , but the main focus is on Dirichlet, Neumann and periodic/anti-periodic conditions. In the linear case p = 2 there are well known oscillation and interlacing results for the eigenvalues of the above problem, with these boundary conditions, and we explore similarities and differences between this case and the nonlinear case with p ≠ 2 . We will see that several new phenomena occur in the periodic/anti-periodic problems. For example, with separated boundary conditions the structure of the spectrum when p ≠ 2 is the same as when p = 2 , but this is not true in the periodic/anti-periodic cases. We also consider the set of ‘half-eigenvalues’ and the ‘Fučík spectrum’ of the problem (these concepts are useful for solving ‘jumping nonlinearity’ problems), and we show that new phenomena also appear here, in addition to analogues of those occurring for the (usual) eigenvalues.
doi_str_mv 10.1016/j.na.2009.01.121
format Article
fullrecord <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_21635567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X09001576</els_id><sourcerecordid>S0362546X09001576</sourcerecordid><originalsourceid>FETCH-LOGICAL-e236t-8e3cea282b3bf2406adcbaf150b6986e63fc860b62a903e05e7c04e030d4959d3</originalsourceid><addsrcrecordid>eNotkM9LxDAQhYMouK7ePebisXWSNGnrTRZ_wcJeFLyFaTrRLDUtSV3wv7eLnh4PPoZ5H2PXAkoBwtzuy4ilBGhLEKWQ4oStRFOrQkuhT9kKlJGFrsz7ObvIeQ8AolZmxTa77MIw4BzGyDH2PMSZ0oAuxA_ux8QPmML4nXmeyM0J-ej5_El84sUWpyOH8ZKdeRwyXf3nmr09Prxunovt7ullc78tSCozFw0pRygb2anOywoM9q5DLzR0pm0MGeVdY5YisQVFoKl2UBEo6KtWt71as5u_uxNmh4NPGF3IdkrhC9OPlcIorU29cHd_HC3PHAIlu2yk6KgPaRlh-zFYAfaoze5tRHvUZkHYRZv6BfpkYRY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oscillation and interlacing for various spectra of the p -Laplacian</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Binding, Paul A. ; Rynne, Bryan P.</creator><creatorcontrib>Binding, Paul A. ; Rynne, Bryan P.</creatorcontrib><description>We consider the eigenvalue problem − Δ p u = ( λ r − q ) | u | p − 1 sgn u , a.e. on  ( 0 , b ) , where b &gt; 0 , p &gt; 1 , Δ p is the p -Laplacian, q , r ∈ L 1 ( 0 , b ) , r &gt; 0 , and λ ∈ R . A variety of boundary conditions will be imposed at 0 and b , but the main focus is on Dirichlet, Neumann and periodic/anti-periodic conditions. In the linear case p = 2 there are well known oscillation and interlacing results for the eigenvalues of the above problem, with these boundary conditions, and we explore similarities and differences between this case and the nonlinear case with p ≠ 2 . We will see that several new phenomena occur in the periodic/anti-periodic problems. For example, with separated boundary conditions the structure of the spectrum when p ≠ 2 is the same as when p = 2 , but this is not true in the periodic/anti-periodic cases. We also consider the set of ‘half-eigenvalues’ and the ‘Fučík spectrum’ of the problem (these concepts are useful for solving ‘jumping nonlinearity’ problems), and we show that new phenomena also appear here, in addition to analogues of those occurring for the (usual) eigenvalues.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2009.01.121</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>[formula omitted]-Laplacian ; Eigenvalues ; Exact sciences and technology ; Mathematical analysis ; Mathematics ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Sciences and techniques of general use ; Separated and periodic boundary conditions</subject><ispartof>Nonlinear analysis, 2009-10, Vol.71 (7), p.2780-2791</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2009.01.121$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21635567$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Binding, Paul A.</creatorcontrib><creatorcontrib>Rynne, Bryan P.</creatorcontrib><title>Oscillation and interlacing for various spectra of the p -Laplacian</title><title>Nonlinear analysis</title><description>We consider the eigenvalue problem − Δ p u = ( λ r − q ) | u | p − 1 sgn u , a.e. on  ( 0 , b ) , where b &gt; 0 , p &gt; 1 , Δ p is the p -Laplacian, q , r ∈ L 1 ( 0 , b ) , r &gt; 0 , and λ ∈ R . A variety of boundary conditions will be imposed at 0 and b , but the main focus is on Dirichlet, Neumann and periodic/anti-periodic conditions. In the linear case p = 2 there are well known oscillation and interlacing results for the eigenvalues of the above problem, with these boundary conditions, and we explore similarities and differences between this case and the nonlinear case with p ≠ 2 . We will see that several new phenomena occur in the periodic/anti-periodic problems. For example, with separated boundary conditions the structure of the spectrum when p ≠ 2 is the same as when p = 2 , but this is not true in the periodic/anti-periodic cases. We also consider the set of ‘half-eigenvalues’ and the ‘Fučík spectrum’ of the problem (these concepts are useful for solving ‘jumping nonlinearity’ problems), and we show that new phenomena also appear here, in addition to analogues of those occurring for the (usual) eigenvalues.</description><subject>[formula omitted]-Laplacian</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Sciences and techniques of general use</subject><subject>Separated and periodic boundary conditions</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNotkM9LxDAQhYMouK7ePebisXWSNGnrTRZ_wcJeFLyFaTrRLDUtSV3wv7eLnh4PPoZ5H2PXAkoBwtzuy4ilBGhLEKWQ4oStRFOrQkuhT9kKlJGFrsz7ObvIeQ8AolZmxTa77MIw4BzGyDH2PMSZ0oAuxA_ux8QPmML4nXmeyM0J-ej5_El84sUWpyOH8ZKdeRwyXf3nmr09Prxunovt7ullc78tSCozFw0pRygb2anOywoM9q5DLzR0pm0MGeVdY5YisQVFoKl2UBEo6KtWt71as5u_uxNmh4NPGF3IdkrhC9OPlcIorU29cHd_HC3PHAIlu2yk6KgPaRlh-zFYAfaoze5tRHvUZkHYRZv6BfpkYRY</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Binding, Paul A.</creator><creator>Rynne, Bryan P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>20091001</creationdate><title>Oscillation and interlacing for various spectra of the p -Laplacian</title><author>Binding, Paul A. ; Rynne, Bryan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e236t-8e3cea282b3bf2406adcbaf150b6986e63fc860b62a903e05e7c04e030d4959d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>[formula omitted]-Laplacian</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Sciences and techniques of general use</topic><topic>Separated and periodic boundary conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binding, Paul A.</creatorcontrib><creatorcontrib>Rynne, Bryan P.</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binding, Paul A.</au><au>Rynne, Bryan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillation and interlacing for various spectra of the p -Laplacian</atitle><jtitle>Nonlinear analysis</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>71</volume><issue>7</issue><spage>2780</spage><epage>2791</epage><pages>2780-2791</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>We consider the eigenvalue problem − Δ p u = ( λ r − q ) | u | p − 1 sgn u , a.e. on  ( 0 , b ) , where b &gt; 0 , p &gt; 1 , Δ p is the p -Laplacian, q , r ∈ L 1 ( 0 , b ) , r &gt; 0 , and λ ∈ R . A variety of boundary conditions will be imposed at 0 and b , but the main focus is on Dirichlet, Neumann and periodic/anti-periodic conditions. In the linear case p = 2 there are well known oscillation and interlacing results for the eigenvalues of the above problem, with these boundary conditions, and we explore similarities and differences between this case and the nonlinear case with p ≠ 2 . We will see that several new phenomena occur in the periodic/anti-periodic problems. For example, with separated boundary conditions the structure of the spectrum when p ≠ 2 is the same as when p = 2 , but this is not true in the periodic/anti-periodic cases. We also consider the set of ‘half-eigenvalues’ and the ‘Fučík spectrum’ of the problem (these concepts are useful for solving ‘jumping nonlinearity’ problems), and we show that new phenomena also appear here, in addition to analogues of those occurring for the (usual) eigenvalues.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2009.01.121</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2009-10, Vol.71 (7), p.2780-2791
issn 0362-546X
1873-5215
language eng
recordid cdi_pascalfrancis_primary_21635567
source ScienceDirect Journals (5 years ago - present)
subjects [formula omitted]-Laplacian
Eigenvalues
Exact sciences and technology
Mathematical analysis
Mathematics
Nonlinear algebraic and transcendental equations
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Sciences and techniques of general use
Separated and periodic boundary conditions
title Oscillation and interlacing for various spectra of the p -Laplacian
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillation%20and%20interlacing%20for%20various%20spectra%20of%20the%20p%20-Laplacian&rft.jtitle=Nonlinear%20analysis&rft.au=Binding,%20Paul%20A.&rft.date=2009-10-01&rft.volume=71&rft.issue=7&rft.spage=2780&rft.epage=2791&rft.pages=2780-2791&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2009.01.121&rft_dat=%3Celsevier_pasca%3ES0362546X09001576%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0362546X09001576&rfr_iscdi=true