Oscillation and interlacing for various spectra of the p -Laplacian
We consider the eigenvalue problem − Δ p u = ( λ r − q ) | u | p − 1 sgn u , a.e. on ( 0 , b ) , where b > 0 , p > 1 , Δ p is the p -Laplacian, q , r ∈ L 1 ( 0 , b ) , r > 0 , and λ ∈ R . A variety of boundary conditions will be imposed at 0 and b , but the main focus is on Dirichlet, Neum...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2009-10, Vol.71 (7), p.2780-2791 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2791 |
---|---|
container_issue | 7 |
container_start_page | 2780 |
container_title | Nonlinear analysis |
container_volume | 71 |
creator | Binding, Paul A. Rynne, Bryan P. |
description | We consider the eigenvalue problem
−
Δ
p
u
=
(
λ
r
−
q
)
|
u
|
p
−
1
sgn
u
,
a.e. on
(
0
,
b
)
,
where
b
>
0
,
p
>
1
,
Δ
p
is the
p
-Laplacian,
q
,
r
∈
L
1
(
0
,
b
)
,
r
>
0
, and
λ
∈
R
. A variety of boundary conditions will be imposed at 0 and
b
, but the main focus is on Dirichlet, Neumann and periodic/anti-periodic conditions. In the linear case
p
=
2
there are well known oscillation and interlacing results for the eigenvalues of the above problem, with these boundary conditions, and we explore similarities and differences between this case and the nonlinear case with
p
≠
2
. We will see that several new phenomena occur in the periodic/anti-periodic problems. For example, with separated boundary conditions the structure of the spectrum when
p
≠
2
is the same as when
p
=
2
, but this is not true in the periodic/anti-periodic cases.
We also consider the set of ‘half-eigenvalues’ and the ‘Fučík spectrum’ of the problem (these concepts are useful for solving ‘jumping nonlinearity’ problems), and we show that new phenomena also appear here, in addition to analogues of those occurring for the (usual) eigenvalues. |
doi_str_mv | 10.1016/j.na.2009.01.121 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_21635567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X09001576</els_id><sourcerecordid>S0362546X09001576</sourcerecordid><originalsourceid>FETCH-LOGICAL-e236t-8e3cea282b3bf2406adcbaf150b6986e63fc860b62a903e05e7c04e030d4959d3</originalsourceid><addsrcrecordid>eNotkM9LxDAQhYMouK7ePebisXWSNGnrTRZ_wcJeFLyFaTrRLDUtSV3wv7eLnh4PPoZ5H2PXAkoBwtzuy4ilBGhLEKWQ4oStRFOrQkuhT9kKlJGFrsz7ObvIeQ8AolZmxTa77MIw4BzGyDH2PMSZ0oAuxA_ux8QPmML4nXmeyM0J-ej5_El84sUWpyOH8ZKdeRwyXf3nmr09Prxunovt7ullc78tSCozFw0pRygb2anOywoM9q5DLzR0pm0MGeVdY5YisQVFoKl2UBEo6KtWt71as5u_uxNmh4NPGF3IdkrhC9OPlcIorU29cHd_HC3PHAIlu2yk6KgPaRlh-zFYAfaoze5tRHvUZkHYRZv6BfpkYRY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oscillation and interlacing for various spectra of the p -Laplacian</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Binding, Paul A. ; Rynne, Bryan P.</creator><creatorcontrib>Binding, Paul A. ; Rynne, Bryan P.</creatorcontrib><description>We consider the eigenvalue problem
−
Δ
p
u
=
(
λ
r
−
q
)
|
u
|
p
−
1
sgn
u
,
a.e. on
(
0
,
b
)
,
where
b
>
0
,
p
>
1
,
Δ
p
is the
p
-Laplacian,
q
,
r
∈
L
1
(
0
,
b
)
,
r
>
0
, and
λ
∈
R
. A variety of boundary conditions will be imposed at 0 and
b
, but the main focus is on Dirichlet, Neumann and periodic/anti-periodic conditions. In the linear case
p
=
2
there are well known oscillation and interlacing results for the eigenvalues of the above problem, with these boundary conditions, and we explore similarities and differences between this case and the nonlinear case with
p
≠
2
. We will see that several new phenomena occur in the periodic/anti-periodic problems. For example, with separated boundary conditions the structure of the spectrum when
p
≠
2
is the same as when
p
=
2
, but this is not true in the periodic/anti-periodic cases.
We also consider the set of ‘half-eigenvalues’ and the ‘Fučík spectrum’ of the problem (these concepts are useful for solving ‘jumping nonlinearity’ problems), and we show that new phenomena also appear here, in addition to analogues of those occurring for the (usual) eigenvalues.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2009.01.121</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>[formula omitted]-Laplacian ; Eigenvalues ; Exact sciences and technology ; Mathematical analysis ; Mathematics ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Sciences and techniques of general use ; Separated and periodic boundary conditions</subject><ispartof>Nonlinear analysis, 2009-10, Vol.71 (7), p.2780-2791</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2009.01.121$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21635567$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Binding, Paul A.</creatorcontrib><creatorcontrib>Rynne, Bryan P.</creatorcontrib><title>Oscillation and interlacing for various spectra of the p -Laplacian</title><title>Nonlinear analysis</title><description>We consider the eigenvalue problem
−
Δ
p
u
=
(
λ
r
−
q
)
|
u
|
p
−
1
sgn
u
,
a.e. on
(
0
,
b
)
,
where
b
>
0
,
p
>
1
,
Δ
p
is the
p
-Laplacian,
q
,
r
∈
L
1
(
0
,
b
)
,
r
>
0
, and
λ
∈
R
. A variety of boundary conditions will be imposed at 0 and
b
, but the main focus is on Dirichlet, Neumann and periodic/anti-periodic conditions. In the linear case
p
=
2
there are well known oscillation and interlacing results for the eigenvalues of the above problem, with these boundary conditions, and we explore similarities and differences between this case and the nonlinear case with
p
≠
2
. We will see that several new phenomena occur in the periodic/anti-periodic problems. For example, with separated boundary conditions the structure of the spectrum when
p
≠
2
is the same as when
p
=
2
, but this is not true in the periodic/anti-periodic cases.
We also consider the set of ‘half-eigenvalues’ and the ‘Fučík spectrum’ of the problem (these concepts are useful for solving ‘jumping nonlinearity’ problems), and we show that new phenomena also appear here, in addition to analogues of those occurring for the (usual) eigenvalues.</description><subject>[formula omitted]-Laplacian</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Sciences and techniques of general use</subject><subject>Separated and periodic boundary conditions</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNotkM9LxDAQhYMouK7ePebisXWSNGnrTRZ_wcJeFLyFaTrRLDUtSV3wv7eLnh4PPoZ5H2PXAkoBwtzuy4ilBGhLEKWQ4oStRFOrQkuhT9kKlJGFrsz7ObvIeQ8AolZmxTa77MIw4BzGyDH2PMSZ0oAuxA_ux8QPmML4nXmeyM0J-ej5_El84sUWpyOH8ZKdeRwyXf3nmr09Prxunovt7ullc78tSCozFw0pRygb2anOywoM9q5DLzR0pm0MGeVdY5YisQVFoKl2UBEo6KtWt71as5u_uxNmh4NPGF3IdkrhC9OPlcIorU29cHd_HC3PHAIlu2yk6KgPaRlh-zFYAfaoze5tRHvUZkHYRZv6BfpkYRY</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Binding, Paul A.</creator><creator>Rynne, Bryan P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>20091001</creationdate><title>Oscillation and interlacing for various spectra of the p -Laplacian</title><author>Binding, Paul A. ; Rynne, Bryan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e236t-8e3cea282b3bf2406adcbaf150b6986e63fc860b62a903e05e7c04e030d4959d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>[formula omitted]-Laplacian</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Sciences and techniques of general use</topic><topic>Separated and periodic boundary conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binding, Paul A.</creatorcontrib><creatorcontrib>Rynne, Bryan P.</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binding, Paul A.</au><au>Rynne, Bryan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillation and interlacing for various spectra of the p -Laplacian</atitle><jtitle>Nonlinear analysis</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>71</volume><issue>7</issue><spage>2780</spage><epage>2791</epage><pages>2780-2791</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>We consider the eigenvalue problem
−
Δ
p
u
=
(
λ
r
−
q
)
|
u
|
p
−
1
sgn
u
,
a.e. on
(
0
,
b
)
,
where
b
>
0
,
p
>
1
,
Δ
p
is the
p
-Laplacian,
q
,
r
∈
L
1
(
0
,
b
)
,
r
>
0
, and
λ
∈
R
. A variety of boundary conditions will be imposed at 0 and
b
, but the main focus is on Dirichlet, Neumann and periodic/anti-periodic conditions. In the linear case
p
=
2
there are well known oscillation and interlacing results for the eigenvalues of the above problem, with these boundary conditions, and we explore similarities and differences between this case and the nonlinear case with
p
≠
2
. We will see that several new phenomena occur in the periodic/anti-periodic problems. For example, with separated boundary conditions the structure of the spectrum when
p
≠
2
is the same as when
p
=
2
, but this is not true in the periodic/anti-periodic cases.
We also consider the set of ‘half-eigenvalues’ and the ‘Fučík spectrum’ of the problem (these concepts are useful for solving ‘jumping nonlinearity’ problems), and we show that new phenomena also appear here, in addition to analogues of those occurring for the (usual) eigenvalues.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2009.01.121</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2009-10, Vol.71 (7), p.2780-2791 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_pascalfrancis_primary_21635567 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | [formula omitted]-Laplacian Eigenvalues Exact sciences and technology Mathematical analysis Mathematics Nonlinear algebraic and transcendental equations Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Sciences and techniques of general use Separated and periodic boundary conditions |
title | Oscillation and interlacing for various spectra of the p -Laplacian |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillation%20and%20interlacing%20for%20various%20spectra%20of%20the%20p%20-Laplacian&rft.jtitle=Nonlinear%20analysis&rft.au=Binding,%20Paul%20A.&rft.date=2009-10-01&rft.volume=71&rft.issue=7&rft.spage=2780&rft.epage=2791&rft.pages=2780-2791&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2009.01.121&rft_dat=%3Celsevier_pasca%3ES0362546X09001576%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0362546X09001576&rfr_iscdi=true |