FDTD Schemes With Minimal Numerical Dispersion

A novel formulation of hybrid finite-difference time-domain (FDTD) methods is presented. Significant reduction of numerical dispersion is achieved by the proposed FDTD methods that combine the second-order and higher-order finite-differences. Also, the proposed FDTD methods exhibit significantly hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on advanced packaging 2009-02, Vol.32 (1), p.199-204
Hauptverfasser: Ogurtsov, S., Georgakopoulos, S.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204
container_issue 1
container_start_page 199
container_title IEEE transactions on advanced packaging
container_volume 32
creator Ogurtsov, S.
Georgakopoulos, S.V.
description A novel formulation of hybrid finite-difference time-domain (FDTD) methods is presented. Significant reduction of numerical dispersion is achieved by the proposed FDTD methods that combine the second-order and higher-order finite-differences. Also, the proposed FDTD methods exhibit significantly higher solution accuracy than the accuracy of standard FDTD schemes as a result of partial mutual cancellation of numerical errors provided by the developed FDTD update procedure. The residual numerical error of the phase velocity remains low even for sampling of a few points per wavelength. Also, the FDTD schemes based on the proposed approach are faster and more accurate than the corresponding purely higher-order FDTD schemes with the same mesh. Test examples are provided for validation purposes.
doi_str_mv 10.1109/TADVP.2008.2008100
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_21471734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4785318</ieee_id><sourcerecordid>875020280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-d529586f393223d5d71fbd7a29cd969c96004e0319dee86e5f41d43b4c0e558d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFb_gF6KoJ62TjLJJjlKa1XwC6x6DGt2lqa0uzVpD_57U1s8ePAyMzDPOzBPlh0z6DMG5nJ8NXx77nMA_VMYwE7WYVKq3BgNu-uZsxyR4352EOMUgAkteCfrj4bjYe_FTWhOsfful5Peg2_8vJz1HldzCt6laejjgkL0bXOY7dXlLNLRtnez19H1eHCb3z_d3A2u7nOHWi3zSnIjdVGjQc6xkpVi9UelSm5cZQrjTAEgCJCZikgXJGvBKoEfwgFJqSvsZhebu4vQfq4oLu3cR0ezWdlQu4pWKwkcuIZEnv9LYoECpFYJPP0DTttVaNIXVkstUAuDCeIbyIU2xkC1XYQkI3xZBnZt2v6YtmvJdms6hc62l8uYdNWhbJyPv0nOhGIKReJONpwnot-1UFoi0_gNwECDug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858438493</pqid></control><display><type>article</type><title>FDTD Schemes With Minimal Numerical Dispersion</title><source>IEEE Electronic Library (IEL)</source><creator>Ogurtsov, S. ; Georgakopoulos, S.V.</creator><creatorcontrib>Ogurtsov, S. ; Georgakopoulos, S.V.</creatorcontrib><description>A novel formulation of hybrid finite-difference time-domain (FDTD) methods is presented. Significant reduction of numerical dispersion is achieved by the proposed FDTD methods that combine the second-order and higher-order finite-differences. Also, the proposed FDTD methods exhibit significantly higher solution accuracy than the accuracy of standard FDTD schemes as a result of partial mutual cancellation of numerical errors provided by the developed FDTD update procedure. The residual numerical error of the phase velocity remains low even for sampling of a few points per wavelength. Also, the FDTD schemes based on the proposed approach are faster and more accurate than the corresponding purely higher-order FDTD schemes with the same mesh. Test examples are provided for validation purposes.</description><identifier>ISSN: 1521-3323</identifier><identifier>EISSN: 1557-9980</identifier><identifier>DOI: 10.1109/TADVP.2008.2008100</identifier><identifier>CODEN: ITAPFZ</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Accuracy ; Algorithm design and analysis ; Applied classical electromagnetism ; Dispersion ; Dispersions ; Eigenvalues and eigenfunctions ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Error correction ; Errors ; Exact sciences and technology ; Finite difference method ; Finite difference methods ; Finite difference time domain method ; Finite-difference time-domain (FDTD) numerical dispersion ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical models ; Maxwell equations ; numerical error ; numerical phase velocity ; Physics ; Sampling ; Sampling methods ; Standards development ; Testing ; Time domain analysis</subject><ispartof>IEEE transactions on advanced packaging, 2009-02, Vol.32 (1), p.199-204</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-d529586f393223d5d71fbd7a29cd969c96004e0319dee86e5f41d43b4c0e558d3</citedby><cites>FETCH-LOGICAL-c387t-d529586f393223d5d71fbd7a29cd969c96004e0319dee86e5f41d43b4c0e558d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4785318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4785318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21471734$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ogurtsov, S.</creatorcontrib><creatorcontrib>Georgakopoulos, S.V.</creatorcontrib><title>FDTD Schemes With Minimal Numerical Dispersion</title><title>IEEE transactions on advanced packaging</title><addtitle>TADVP</addtitle><description>A novel formulation of hybrid finite-difference time-domain (FDTD) methods is presented. Significant reduction of numerical dispersion is achieved by the proposed FDTD methods that combine the second-order and higher-order finite-differences. Also, the proposed FDTD methods exhibit significantly higher solution accuracy than the accuracy of standard FDTD schemes as a result of partial mutual cancellation of numerical errors provided by the developed FDTD update procedure. The residual numerical error of the phase velocity remains low even for sampling of a few points per wavelength. Also, the FDTD schemes based on the proposed approach are faster and more accurate than the corresponding purely higher-order FDTD schemes with the same mesh. Test examples are provided for validation purposes.</description><subject>Accuracy</subject><subject>Algorithm design and analysis</subject><subject>Applied classical electromagnetism</subject><subject>Dispersion</subject><subject>Dispersions</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Error correction</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Finite difference methods</subject><subject>Finite difference time domain method</subject><subject>Finite-difference time-domain (FDTD) numerical dispersion</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maxwell equations</subject><subject>numerical error</subject><subject>numerical phase velocity</subject><subject>Physics</subject><subject>Sampling</subject><subject>Sampling methods</subject><subject>Standards development</subject><subject>Testing</subject><subject>Time domain analysis</subject><issn>1521-3323</issn><issn>1557-9980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhhdRsFb_gF6KoJ62TjLJJjlKa1XwC6x6DGt2lqa0uzVpD_57U1s8ePAyMzDPOzBPlh0z6DMG5nJ8NXx77nMA_VMYwE7WYVKq3BgNu-uZsxyR4352EOMUgAkteCfrj4bjYe_FTWhOsfful5Peg2_8vJz1HldzCt6laejjgkL0bXOY7dXlLNLRtnez19H1eHCb3z_d3A2u7nOHWi3zSnIjdVGjQc6xkpVi9UelSm5cZQrjTAEgCJCZikgXJGvBKoEfwgFJqSvsZhebu4vQfq4oLu3cR0ezWdlQu4pWKwkcuIZEnv9LYoECpFYJPP0DTttVaNIXVkstUAuDCeIbyIU2xkC1XYQkI3xZBnZt2v6YtmvJdms6hc62l8uYdNWhbJyPv0nOhGIKReJONpwnot-1UFoi0_gNwECDug</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Ogurtsov, S.</creator><creator>Georgakopoulos, S.V.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20090201</creationdate><title>FDTD Schemes With Minimal Numerical Dispersion</title><author>Ogurtsov, S. ; Georgakopoulos, S.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-d529586f393223d5d71fbd7a29cd969c96004e0319dee86e5f41d43b4c0e558d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Algorithm design and analysis</topic><topic>Applied classical electromagnetism</topic><topic>Dispersion</topic><topic>Dispersions</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Error correction</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Finite difference methods</topic><topic>Finite difference time domain method</topic><topic>Finite-difference time-domain (FDTD) numerical dispersion</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maxwell equations</topic><topic>numerical error</topic><topic>numerical phase velocity</topic><topic>Physics</topic><topic>Sampling</topic><topic>Sampling methods</topic><topic>Standards development</topic><topic>Testing</topic><topic>Time domain analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Ogurtsov, S.</creatorcontrib><creatorcontrib>Georgakopoulos, S.V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on advanced packaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ogurtsov, S.</au><au>Georgakopoulos, S.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FDTD Schemes With Minimal Numerical Dispersion</atitle><jtitle>IEEE transactions on advanced packaging</jtitle><stitle>TADVP</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>32</volume><issue>1</issue><spage>199</spage><epage>204</epage><pages>199-204</pages><issn>1521-3323</issn><eissn>1557-9980</eissn><coden>ITAPFZ</coden><abstract>A novel formulation of hybrid finite-difference time-domain (FDTD) methods is presented. Significant reduction of numerical dispersion is achieved by the proposed FDTD methods that combine the second-order and higher-order finite-differences. Also, the proposed FDTD methods exhibit significantly higher solution accuracy than the accuracy of standard FDTD schemes as a result of partial mutual cancellation of numerical errors provided by the developed FDTD update procedure. The residual numerical error of the phase velocity remains low even for sampling of a few points per wavelength. Also, the FDTD schemes based on the proposed approach are faster and more accurate than the corresponding purely higher-order FDTD schemes with the same mesh. Test examples are provided for validation purposes.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TADVP.2008.2008100</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1521-3323
ispartof IEEE transactions on advanced packaging, 2009-02, Vol.32 (1), p.199-204
issn 1521-3323
1557-9980
language eng
recordid cdi_pascalfrancis_primary_21471734
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithm design and analysis
Applied classical electromagnetism
Dispersion
Dispersions
Eigenvalues and eigenfunctions
Electromagnetic wave propagation, radiowave propagation
Electromagnetism
electron and ion optics
Error correction
Errors
Exact sciences and technology
Finite difference method
Finite difference methods
Finite difference time domain method
Finite-difference time-domain (FDTD) numerical dispersion
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Mathematical models
Maxwell equations
numerical error
numerical phase velocity
Physics
Sampling
Sampling methods
Standards development
Testing
Time domain analysis
title FDTD Schemes With Minimal Numerical Dispersion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FDTD%20Schemes%20With%20Minimal%20Numerical%20Dispersion&rft.jtitle=IEEE%20transactions%20on%20advanced%20packaging&rft.au=Ogurtsov,%20S.&rft.date=2009-02-01&rft.volume=32&rft.issue=1&rft.spage=199&rft.epage=204&rft.pages=199-204&rft.issn=1521-3323&rft.eissn=1557-9980&rft.coden=ITAPFZ&rft_id=info:doi/10.1109/TADVP.2008.2008100&rft_dat=%3Cproquest_RIE%3E875020280%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858438493&rft_id=info:pmid/&rft_ieee_id=4785318&rfr_iscdi=true