FDTD Schemes With Minimal Numerical Dispersion
A novel formulation of hybrid finite-difference time-domain (FDTD) methods is presented. Significant reduction of numerical dispersion is achieved by the proposed FDTD methods that combine the second-order and higher-order finite-differences. Also, the proposed FDTD methods exhibit significantly hig...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on advanced packaging 2009-02, Vol.32 (1), p.199-204 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 204 |
---|---|
container_issue | 1 |
container_start_page | 199 |
container_title | IEEE transactions on advanced packaging |
container_volume | 32 |
creator | Ogurtsov, S. Georgakopoulos, S.V. |
description | A novel formulation of hybrid finite-difference time-domain (FDTD) methods is presented. Significant reduction of numerical dispersion is achieved by the proposed FDTD methods that combine the second-order and higher-order finite-differences. Also, the proposed FDTD methods exhibit significantly higher solution accuracy than the accuracy of standard FDTD schemes as a result of partial mutual cancellation of numerical errors provided by the developed FDTD update procedure. The residual numerical error of the phase velocity remains low even for sampling of a few points per wavelength. Also, the FDTD schemes based on the proposed approach are faster and more accurate than the corresponding purely higher-order FDTD schemes with the same mesh. Test examples are provided for validation purposes. |
doi_str_mv | 10.1109/TADVP.2008.2008100 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_21471734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4785318</ieee_id><sourcerecordid>875020280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-d529586f393223d5d71fbd7a29cd969c96004e0319dee86e5f41d43b4c0e558d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFb_gF6KoJ62TjLJJjlKa1XwC6x6DGt2lqa0uzVpD_57U1s8ePAyMzDPOzBPlh0z6DMG5nJ8NXx77nMA_VMYwE7WYVKq3BgNu-uZsxyR4352EOMUgAkteCfrj4bjYe_FTWhOsfful5Peg2_8vJz1HldzCt6laejjgkL0bXOY7dXlLNLRtnez19H1eHCb3z_d3A2u7nOHWi3zSnIjdVGjQc6xkpVi9UelSm5cZQrjTAEgCJCZikgXJGvBKoEfwgFJqSvsZhebu4vQfq4oLu3cR0ezWdlQu4pWKwkcuIZEnv9LYoECpFYJPP0DTttVaNIXVkstUAuDCeIbyIU2xkC1XYQkI3xZBnZt2v6YtmvJdms6hc62l8uYdNWhbJyPv0nOhGIKReJONpwnot-1UFoi0_gNwECDug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858438493</pqid></control><display><type>article</type><title>FDTD Schemes With Minimal Numerical Dispersion</title><source>IEEE Electronic Library (IEL)</source><creator>Ogurtsov, S. ; Georgakopoulos, S.V.</creator><creatorcontrib>Ogurtsov, S. ; Georgakopoulos, S.V.</creatorcontrib><description>A novel formulation of hybrid finite-difference time-domain (FDTD) methods is presented. Significant reduction of numerical dispersion is achieved by the proposed FDTD methods that combine the second-order and higher-order finite-differences. Also, the proposed FDTD methods exhibit significantly higher solution accuracy than the accuracy of standard FDTD schemes as a result of partial mutual cancellation of numerical errors provided by the developed FDTD update procedure. The residual numerical error of the phase velocity remains low even for sampling of a few points per wavelength. Also, the FDTD schemes based on the proposed approach are faster and more accurate than the corresponding purely higher-order FDTD schemes with the same mesh. Test examples are provided for validation purposes.</description><identifier>ISSN: 1521-3323</identifier><identifier>EISSN: 1557-9980</identifier><identifier>DOI: 10.1109/TADVP.2008.2008100</identifier><identifier>CODEN: ITAPFZ</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Accuracy ; Algorithm design and analysis ; Applied classical electromagnetism ; Dispersion ; Dispersions ; Eigenvalues and eigenfunctions ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Error correction ; Errors ; Exact sciences and technology ; Finite difference method ; Finite difference methods ; Finite difference time domain method ; Finite-difference time-domain (FDTD) numerical dispersion ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical models ; Maxwell equations ; numerical error ; numerical phase velocity ; Physics ; Sampling ; Sampling methods ; Standards development ; Testing ; Time domain analysis</subject><ispartof>IEEE transactions on advanced packaging, 2009-02, Vol.32 (1), p.199-204</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-d529586f393223d5d71fbd7a29cd969c96004e0319dee86e5f41d43b4c0e558d3</citedby><cites>FETCH-LOGICAL-c387t-d529586f393223d5d71fbd7a29cd969c96004e0319dee86e5f41d43b4c0e558d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4785318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4785318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21471734$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ogurtsov, S.</creatorcontrib><creatorcontrib>Georgakopoulos, S.V.</creatorcontrib><title>FDTD Schemes With Minimal Numerical Dispersion</title><title>IEEE transactions on advanced packaging</title><addtitle>TADVP</addtitle><description>A novel formulation of hybrid finite-difference time-domain (FDTD) methods is presented. Significant reduction of numerical dispersion is achieved by the proposed FDTD methods that combine the second-order and higher-order finite-differences. Also, the proposed FDTD methods exhibit significantly higher solution accuracy than the accuracy of standard FDTD schemes as a result of partial mutual cancellation of numerical errors provided by the developed FDTD update procedure. The residual numerical error of the phase velocity remains low even for sampling of a few points per wavelength. Also, the FDTD schemes based on the proposed approach are faster and more accurate than the corresponding purely higher-order FDTD schemes with the same mesh. Test examples are provided for validation purposes.</description><subject>Accuracy</subject><subject>Algorithm design and analysis</subject><subject>Applied classical electromagnetism</subject><subject>Dispersion</subject><subject>Dispersions</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Error correction</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Finite difference methods</subject><subject>Finite difference time domain method</subject><subject>Finite-difference time-domain (FDTD) numerical dispersion</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maxwell equations</subject><subject>numerical error</subject><subject>numerical phase velocity</subject><subject>Physics</subject><subject>Sampling</subject><subject>Sampling methods</subject><subject>Standards development</subject><subject>Testing</subject><subject>Time domain analysis</subject><issn>1521-3323</issn><issn>1557-9980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhhdRsFb_gF6KoJ62TjLJJjlKa1XwC6x6DGt2lqa0uzVpD_57U1s8ePAyMzDPOzBPlh0z6DMG5nJ8NXx77nMA_VMYwE7WYVKq3BgNu-uZsxyR4352EOMUgAkteCfrj4bjYe_FTWhOsfful5Peg2_8vJz1HldzCt6laejjgkL0bXOY7dXlLNLRtnez19H1eHCb3z_d3A2u7nOHWi3zSnIjdVGjQc6xkpVi9UelSm5cZQrjTAEgCJCZikgXJGvBKoEfwgFJqSvsZhebu4vQfq4oLu3cR0ezWdlQu4pWKwkcuIZEnv9LYoECpFYJPP0DTttVaNIXVkstUAuDCeIbyIU2xkC1XYQkI3xZBnZt2v6YtmvJdms6hc62l8uYdNWhbJyPv0nOhGIKReJONpwnot-1UFoi0_gNwECDug</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Ogurtsov, S.</creator><creator>Georgakopoulos, S.V.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20090201</creationdate><title>FDTD Schemes With Minimal Numerical Dispersion</title><author>Ogurtsov, S. ; Georgakopoulos, S.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-d529586f393223d5d71fbd7a29cd969c96004e0319dee86e5f41d43b4c0e558d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Algorithm design and analysis</topic><topic>Applied classical electromagnetism</topic><topic>Dispersion</topic><topic>Dispersions</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Error correction</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Finite difference methods</topic><topic>Finite difference time domain method</topic><topic>Finite-difference time-domain (FDTD) numerical dispersion</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maxwell equations</topic><topic>numerical error</topic><topic>numerical phase velocity</topic><topic>Physics</topic><topic>Sampling</topic><topic>Sampling methods</topic><topic>Standards development</topic><topic>Testing</topic><topic>Time domain analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Ogurtsov, S.</creatorcontrib><creatorcontrib>Georgakopoulos, S.V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on advanced packaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ogurtsov, S.</au><au>Georgakopoulos, S.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FDTD Schemes With Minimal Numerical Dispersion</atitle><jtitle>IEEE transactions on advanced packaging</jtitle><stitle>TADVP</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>32</volume><issue>1</issue><spage>199</spage><epage>204</epage><pages>199-204</pages><issn>1521-3323</issn><eissn>1557-9980</eissn><coden>ITAPFZ</coden><abstract>A novel formulation of hybrid finite-difference time-domain (FDTD) methods is presented. Significant reduction of numerical dispersion is achieved by the proposed FDTD methods that combine the second-order and higher-order finite-differences. Also, the proposed FDTD methods exhibit significantly higher solution accuracy than the accuracy of standard FDTD schemes as a result of partial mutual cancellation of numerical errors provided by the developed FDTD update procedure. The residual numerical error of the phase velocity remains low even for sampling of a few points per wavelength. Also, the FDTD schemes based on the proposed approach are faster and more accurate than the corresponding purely higher-order FDTD schemes with the same mesh. Test examples are provided for validation purposes.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TADVP.2008.2008100</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1521-3323 |
ispartof | IEEE transactions on advanced packaging, 2009-02, Vol.32 (1), p.199-204 |
issn | 1521-3323 1557-9980 |
language | eng |
recordid | cdi_pascalfrancis_primary_21471734 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Algorithm design and analysis Applied classical electromagnetism Dispersion Dispersions Eigenvalues and eigenfunctions Electromagnetic wave propagation, radiowave propagation Electromagnetism electron and ion optics Error correction Errors Exact sciences and technology Finite difference method Finite difference methods Finite difference time domain method Finite-difference time-domain (FDTD) numerical dispersion Fundamental areas of phenomenology (including applications) Mathematical analysis Mathematical models Maxwell equations numerical error numerical phase velocity Physics Sampling Sampling methods Standards development Testing Time domain analysis |
title | FDTD Schemes With Minimal Numerical Dispersion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FDTD%20Schemes%20With%20Minimal%20Numerical%20Dispersion&rft.jtitle=IEEE%20transactions%20on%20advanced%20packaging&rft.au=Ogurtsov,%20S.&rft.date=2009-02-01&rft.volume=32&rft.issue=1&rft.spage=199&rft.epage=204&rft.pages=199-204&rft.issn=1521-3323&rft.eissn=1557-9980&rft.coden=ITAPFZ&rft_id=info:doi/10.1109/TADVP.2008.2008100&rft_dat=%3Cproquest_RIE%3E875020280%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858438493&rft_id=info:pmid/&rft_ieee_id=4785318&rfr_iscdi=true |