Implementation of higher-order absorbing boundary conditions for the Einstein equations

We present an implementation of absorbing boundary conditions for the Einstein equations based on the recent work of Buchman and Sarbach. In this paper, we assume that spacetime may be linearized about Minkowski space close to the outer boundary, which is taken to be a coordinate sphere. We reformul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Classical and quantum gravity 2009-04, Vol.26 (7), p.075009-075009 (24)
Hauptverfasser: Rinne, Oliver, Buchman, Luisa T, Scheel, Mark A, Pfeiffer, Harald P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 075009 (24)
container_issue 7
container_start_page 075009
container_title Classical and quantum gravity
container_volume 26
creator Rinne, Oliver
Buchman, Luisa T
Scheel, Mark A
Pfeiffer, Harald P
description We present an implementation of absorbing boundary conditions for the Einstein equations based on the recent work of Buchman and Sarbach. In this paper, we assume that spacetime may be linearized about Minkowski space close to the outer boundary, which is taken to be a coordinate sphere. We reformulate the boundary conditions as conditions on the gauge-invariant Regge-Wheeler-Zerilli scalars. Higher-order radial derivatives are eliminated by rewriting the boundary conditions as a system of ODEs for a set of auxiliary variables intrinsic to the boundary. From these we construct boundary data for a set of well-posed constraint-preserving boundary conditions for the Einstein equations in a first-order generalized harmonic formulation. This construction has direct applications to outer boundary conditions in simulations of isolated systems (e.g., binary black holes) as well as to the problem of Cauchy-perturbative matching. As a test problem for our numerical implementation, we consider linearized multipolar gravitational waves in TT gauge, with angular momentum numbers = 2 (Teukolsky waves), 3 and 4. We demonstrate that the perfectly absorbing boundary condition of order L = yields no spurious reflections to linear order in perturbation theory. This is in contrast to the lower-order absorbing boundary conditions with L < , which include the widely used freezing-0 boundary condition that imposes the vanishing of the Newman-Penrose scalar 0.
doi_str_mv 10.1088/0264-9381/26/7/075009
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_21359588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743234394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-b21c69e98c18797040b88d85a99ea2edc2580f02b24a962039347800d4b4ca893</originalsourceid><addsrcrecordid>eNqN0DtP5DAUBWBrxUoMLD8ByQ3QkJ3rR-LrEiFeEtI2iygtx3EYrzJ2sDMF_54Mg2hAaCs33zlXPoQcM_jNAHEJvJGVFsiWvFmqJagaQP8gCyYaVjUC-R5ZfJh9clDKPwDGkPEFebxbj4Nf-zjZKaRIU09X4Wnlc5Vy5zO1bUm5DfGJtmkTO5tfqEuxC1tcaJ8ynVaeXoVYJh8i9c-bt57yi_zs7VD80ft7SB6ur_5e3lb3f27uLi_uKycVm6qWM9dor9ExVFqBhBaxw9pq7S33neM1Qg-85dLqhoPQQioE6GQrnUUtDsnZrnfM6Xnjy2TWoTg_DDb6tClGScGFFFrO8vRbyUFizVHNsN5Bl1Mp2fdmzGE9_9wwMNvBzXZMsx3T8MYosxt8zp28H7DF2aHPNrpQPsKciVrXiLODnQtp_O_q88-RL6kZu168AnHQnB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20485287</pqid></control><display><type>article</type><title>Implementation of higher-order absorbing boundary conditions for the Einstein equations</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Rinne, Oliver ; Buchman, Luisa T ; Scheel, Mark A ; Pfeiffer, Harald P</creator><creatorcontrib>Rinne, Oliver ; Buchman, Luisa T ; Scheel, Mark A ; Pfeiffer, Harald P</creatorcontrib><description>We present an implementation of absorbing boundary conditions for the Einstein equations based on the recent work of Buchman and Sarbach. In this paper, we assume that spacetime may be linearized about Minkowski space close to the outer boundary, which is taken to be a coordinate sphere. We reformulate the boundary conditions as conditions on the gauge-invariant Regge-Wheeler-Zerilli scalars. Higher-order radial derivatives are eliminated by rewriting the boundary conditions as a system of ODEs for a set of auxiliary variables intrinsic to the boundary. From these we construct boundary data for a set of well-posed constraint-preserving boundary conditions for the Einstein equations in a first-order generalized harmonic formulation. This construction has direct applications to outer boundary conditions in simulations of isolated systems (e.g., binary black holes) as well as to the problem of Cauchy-perturbative matching. As a test problem for our numerical implementation, we consider linearized multipolar gravitational waves in TT gauge, with angular momentum numbers = 2 (Teukolsky waves), 3 and 4. We demonstrate that the perfectly absorbing boundary condition of order L = yields no spurious reflections to linear order in perturbation theory. This is in contrast to the lower-order absorbing boundary conditions with L &lt; , which include the widely used freezing-0 boundary condition that imposes the vanishing of the Newman-Penrose scalar 0.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/0264-9381/26/7/075009</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Exact sciences and technology ; General relativity and gravitation ; Physics</subject><ispartof>Classical and quantum gravity, 2009-04, Vol.26 (7), p.075009-075009 (24)</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-b21c69e98c18797040b88d85a99ea2edc2580f02b24a962039347800d4b4ca893</citedby><cites>FETCH-LOGICAL-c471t-b21c69e98c18797040b88d85a99ea2edc2580f02b24a962039347800d4b4ca893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0264-9381/26/7/075009/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53805,53885</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21359588$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rinne, Oliver</creatorcontrib><creatorcontrib>Buchman, Luisa T</creatorcontrib><creatorcontrib>Scheel, Mark A</creatorcontrib><creatorcontrib>Pfeiffer, Harald P</creatorcontrib><title>Implementation of higher-order absorbing boundary conditions for the Einstein equations</title><title>Classical and quantum gravity</title><description>We present an implementation of absorbing boundary conditions for the Einstein equations based on the recent work of Buchman and Sarbach. In this paper, we assume that spacetime may be linearized about Minkowski space close to the outer boundary, which is taken to be a coordinate sphere. We reformulate the boundary conditions as conditions on the gauge-invariant Regge-Wheeler-Zerilli scalars. Higher-order radial derivatives are eliminated by rewriting the boundary conditions as a system of ODEs for a set of auxiliary variables intrinsic to the boundary. From these we construct boundary data for a set of well-posed constraint-preserving boundary conditions for the Einstein equations in a first-order generalized harmonic formulation. This construction has direct applications to outer boundary conditions in simulations of isolated systems (e.g., binary black holes) as well as to the problem of Cauchy-perturbative matching. As a test problem for our numerical implementation, we consider linearized multipolar gravitational waves in TT gauge, with angular momentum numbers = 2 (Teukolsky waves), 3 and 4. We demonstrate that the perfectly absorbing boundary condition of order L = yields no spurious reflections to linear order in perturbation theory. This is in contrast to the lower-order absorbing boundary conditions with L &lt; , which include the widely used freezing-0 boundary condition that imposes the vanishing of the Newman-Penrose scalar 0.</description><subject>Exact sciences and technology</subject><subject>General relativity and gravitation</subject><subject>Physics</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqN0DtP5DAUBWBrxUoMLD8ByQ3QkJ3rR-LrEiFeEtI2iygtx3EYrzJ2sDMF_54Mg2hAaCs33zlXPoQcM_jNAHEJvJGVFsiWvFmqJagaQP8gCyYaVjUC-R5ZfJh9clDKPwDGkPEFebxbj4Nf-zjZKaRIU09X4Wnlc5Vy5zO1bUm5DfGJtmkTO5tfqEuxC1tcaJ8ynVaeXoVYJh8i9c-bt57yi_zs7VD80ft7SB6ur_5e3lb3f27uLi_uKycVm6qWM9dor9ExVFqBhBaxw9pq7S33neM1Qg-85dLqhoPQQioE6GQrnUUtDsnZrnfM6Xnjy2TWoTg_DDb6tClGScGFFFrO8vRbyUFizVHNsN5Bl1Mp2fdmzGE9_9wwMNvBzXZMsx3T8MYosxt8zp28H7DF2aHPNrpQPsKciVrXiLODnQtp_O_q88-RL6kZu168AnHQnB8</recordid><startdate>20090407</startdate><enddate>20090407</enddate><creator>Rinne, Oliver</creator><creator>Buchman, Luisa T</creator><creator>Scheel, Mark A</creator><creator>Pfeiffer, Harald P</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090407</creationdate><title>Implementation of higher-order absorbing boundary conditions for the Einstein equations</title><author>Rinne, Oliver ; Buchman, Luisa T ; Scheel, Mark A ; Pfeiffer, Harald P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-b21c69e98c18797040b88d85a99ea2edc2580f02b24a962039347800d4b4ca893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Exact sciences and technology</topic><topic>General relativity and gravitation</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rinne, Oliver</creatorcontrib><creatorcontrib>Buchman, Luisa T</creatorcontrib><creatorcontrib>Scheel, Mark A</creatorcontrib><creatorcontrib>Pfeiffer, Harald P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rinne, Oliver</au><au>Buchman, Luisa T</au><au>Scheel, Mark A</au><au>Pfeiffer, Harald P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of higher-order absorbing boundary conditions for the Einstein equations</atitle><jtitle>Classical and quantum gravity</jtitle><date>2009-04-07</date><risdate>2009</risdate><volume>26</volume><issue>7</issue><spage>075009</spage><epage>075009 (24)</epage><pages>075009-075009 (24)</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>We present an implementation of absorbing boundary conditions for the Einstein equations based on the recent work of Buchman and Sarbach. In this paper, we assume that spacetime may be linearized about Minkowski space close to the outer boundary, which is taken to be a coordinate sphere. We reformulate the boundary conditions as conditions on the gauge-invariant Regge-Wheeler-Zerilli scalars. Higher-order radial derivatives are eliminated by rewriting the boundary conditions as a system of ODEs for a set of auxiliary variables intrinsic to the boundary. From these we construct boundary data for a set of well-posed constraint-preserving boundary conditions for the Einstein equations in a first-order generalized harmonic formulation. This construction has direct applications to outer boundary conditions in simulations of isolated systems (e.g., binary black holes) as well as to the problem of Cauchy-perturbative matching. As a test problem for our numerical implementation, we consider linearized multipolar gravitational waves in TT gauge, with angular momentum numbers = 2 (Teukolsky waves), 3 and 4. We demonstrate that the perfectly absorbing boundary condition of order L = yields no spurious reflections to linear order in perturbation theory. This is in contrast to the lower-order absorbing boundary conditions with L &lt; , which include the widely used freezing-0 boundary condition that imposes the vanishing of the Newman-Penrose scalar 0.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0264-9381/26/7/075009</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0264-9381
ispartof Classical and quantum gravity, 2009-04, Vol.26 (7), p.075009-075009 (24)
issn 0264-9381
1361-6382
language eng
recordid cdi_pascalfrancis_primary_21359588
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Exact sciences and technology
General relativity and gravitation
Physics
title Implementation of higher-order absorbing boundary conditions for the Einstein equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20higher-order%20absorbing%20boundary%20conditions%20for%20the%20Einstein%20equations&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Rinne,%20Oliver&rft.date=2009-04-07&rft.volume=26&rft.issue=7&rft.spage=075009&rft.epage=075009%20(24)&rft.pages=075009-075009%20(24)&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/0264-9381/26/7/075009&rft_dat=%3Cproquest_pasca%3E743234394%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20485287&rft_id=info:pmid/&rfr_iscdi=true