Reversible Resampling of Integer Signals
Except some extremely special cases, signal resampling was generally considered to be irreversible because of strong attenuation of high frequencies after interpolation. In this paper, we prove that signal resampling based on polynomial interpolation can be reversible even for integer signals, i.e.,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2009-02, Vol.57 (2), p.516-525 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 525 |
---|---|
container_issue | 2 |
container_start_page | 516 |
container_title | IEEE transactions on signal processing |
container_volume | 57 |
creator | Pengwei Hao, Pengwei Hao |
description | Except some extremely special cases, signal resampling was generally considered to be irreversible because of strong attenuation of high frequencies after interpolation. In this paper, we prove that signal resampling based on polynomial interpolation can be reversible even for integer signals, i.e., the original signal can be reconstructed losslessly from the resampled data. By using matrix factorization, we also propose a reversible method for uniform shifted resampling and uniform scaled and shifted resampling. The new factorization yields three elementary integer-reversible matrices. The method is actually a new way to compute linear transforms and a lossless integer implementation of linear transforms with the factor matrices. It can be applied to integer signals by in-place integer-reversible computation, which needs no auxiliary memory to keep the original sample data for the transformation during the process or for ldquoundordquo recovery after the process. Some examples of low-order resampling solutions are also presented in this paper and our experiments show that the resampling error relative to the original signal is comparable to that of the traditional irreversible resampling. |
doi_str_mv | 10.1109/TSP.2008.2008243 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_21172427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4663930</ieee_id><sourcerecordid>34922953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-e89c0bac3de9d1db0258aeb8a9694fc391a8708179a8d6dcaeb7b41ab2ef70973</originalsourceid><addsrcrecordid>eNp9kMtLAzEQh4MoWKt3wUsRfFy2Th67SY5SfBQKSlvBW8hmZ8uW7W5NWsH_3qwtHjx4mRmYbwZ-HyHnFIaUgr6bz16HDED9FCb4AelRLWgCQmaHcYaUJ6mS78fkJIQlABVCZz1yO8VP9KHKaxxMMdjVuq6axaAtB-Nmgwv0g1m1aGwdTslRGRue7XufvD0-zEfPyeTlaTy6nyROsHSToNIOcut4gbqgRQ4sVRZzZXWmRem4plZJUFRqq4qscHEnc0FtzrCUoCXvk5vd37VvP7YYNmZVBYd1bRtst8EomQJjwCGS1_-SXGjGdMojePkHXLZb34UyKqOUMx7l9AnsIOfbEDyWZu2rlfVfhoLpDJto2HRyzd5wPLna_7XB2br0tnFV-L1jlEomWBfpYsdViPi7FlnGdYzxDcBCgl8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861132305</pqid></control><display><type>article</type><title>Reversible Resampling of Integer Signals</title><source>IEEE Electronic Library (IEL)</source><creator>Pengwei Hao, Pengwei Hao</creator><creatorcontrib>Pengwei Hao, Pengwei Hao</creatorcontrib><description>Except some extremely special cases, signal resampling was generally considered to be irreversible because of strong attenuation of high frequencies after interpolation. In this paper, we prove that signal resampling based on polynomial interpolation can be reversible even for integer signals, i.e., the original signal can be reconstructed losslessly from the resampled data. By using matrix factorization, we also propose a reversible method for uniform shifted resampling and uniform scaled and shifted resampling. The new factorization yields three elementary integer-reversible matrices. The method is actually a new way to compute linear transforms and a lossless integer implementation of linear transforms with the factor matrices. It can be applied to integer signals by in-place integer-reversible computation, which needs no auxiliary memory to keep the original sample data for the transformation during the process or for ldquoundordquo recovery after the process. Some examples of low-order resampling solutions are also presented in this paper and our experiments show that the resampling error relative to the original signal is comparable to that of the traditional irreversible resampling.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2008.2008243</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Attenuation ; Discrete transforms ; Exact sciences and technology ; Factorial polynomials ; Factorization ; Frequency ; Image processing ; Image reconstruction ; Image sampling ; Information, signal and communications theory ; integer-to-integer transforms ; Integers ; Interpolation ; Mathematical analysis ; Matrices ; Miscellaneous ; PLUS factorization of matrices ; Polynomials ; Resampling ; Signal processing ; Signal sampling ; Stirling numbers ; Studies ; Telecommunications and information theory ; Transforms</subject><ispartof>IEEE transactions on signal processing, 2009-02, Vol.57 (2), p.516-525</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-e89c0bac3de9d1db0258aeb8a9694fc391a8708179a8d6dcaeb7b41ab2ef70973</citedby><cites>FETCH-LOGICAL-c425t-e89c0bac3de9d1db0258aeb8a9694fc391a8708179a8d6dcaeb7b41ab2ef70973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4663930$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4663930$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21172427$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pengwei Hao, Pengwei Hao</creatorcontrib><title>Reversible Resampling of Integer Signals</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Except some extremely special cases, signal resampling was generally considered to be irreversible because of strong attenuation of high frequencies after interpolation. In this paper, we prove that signal resampling based on polynomial interpolation can be reversible even for integer signals, i.e., the original signal can be reconstructed losslessly from the resampled data. By using matrix factorization, we also propose a reversible method for uniform shifted resampling and uniform scaled and shifted resampling. The new factorization yields three elementary integer-reversible matrices. The method is actually a new way to compute linear transforms and a lossless integer implementation of linear transforms with the factor matrices. It can be applied to integer signals by in-place integer-reversible computation, which needs no auxiliary memory to keep the original sample data for the transformation during the process or for ldquoundordquo recovery after the process. Some examples of low-order resampling solutions are also presented in this paper and our experiments show that the resampling error relative to the original signal is comparable to that of the traditional irreversible resampling.</description><subject>Applied sciences</subject><subject>Attenuation</subject><subject>Discrete transforms</subject><subject>Exact sciences and technology</subject><subject>Factorial polynomials</subject><subject>Factorization</subject><subject>Frequency</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Image sampling</subject><subject>Information, signal and communications theory</subject><subject>integer-to-integer transforms</subject><subject>Integers</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Miscellaneous</subject><subject>PLUS factorization of matrices</subject><subject>Polynomials</subject><subject>Resampling</subject><subject>Signal processing</subject><subject>Signal sampling</subject><subject>Stirling numbers</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Transforms</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kMtLAzEQh4MoWKt3wUsRfFy2Th67SY5SfBQKSlvBW8hmZ8uW7W5NWsH_3qwtHjx4mRmYbwZ-HyHnFIaUgr6bz16HDED9FCb4AelRLWgCQmaHcYaUJ6mS78fkJIQlABVCZz1yO8VP9KHKaxxMMdjVuq6axaAtB-Nmgwv0g1m1aGwdTslRGRue7XufvD0-zEfPyeTlaTy6nyROsHSToNIOcut4gbqgRQ4sVRZzZXWmRem4plZJUFRqq4qscHEnc0FtzrCUoCXvk5vd37VvP7YYNmZVBYd1bRtst8EomQJjwCGS1_-SXGjGdMojePkHXLZb34UyKqOUMx7l9AnsIOfbEDyWZu2rlfVfhoLpDJto2HRyzd5wPLna_7XB2br0tnFV-L1jlEomWBfpYsdViPi7FlnGdYzxDcBCgl8</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Pengwei Hao, Pengwei Hao</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090201</creationdate><title>Reversible Resampling of Integer Signals</title><author>Pengwei Hao, Pengwei Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-e89c0bac3de9d1db0258aeb8a9694fc391a8708179a8d6dcaeb7b41ab2ef70973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Attenuation</topic><topic>Discrete transforms</topic><topic>Exact sciences and technology</topic><topic>Factorial polynomials</topic><topic>Factorization</topic><topic>Frequency</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Image sampling</topic><topic>Information, signal and communications theory</topic><topic>integer-to-integer transforms</topic><topic>Integers</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Miscellaneous</topic><topic>PLUS factorization of matrices</topic><topic>Polynomials</topic><topic>Resampling</topic><topic>Signal processing</topic><topic>Signal sampling</topic><topic>Stirling numbers</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pengwei Hao, Pengwei Hao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pengwei Hao, Pengwei Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversible Resampling of Integer Signals</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>57</volume><issue>2</issue><spage>516</spage><epage>525</epage><pages>516-525</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Except some extremely special cases, signal resampling was generally considered to be irreversible because of strong attenuation of high frequencies after interpolation. In this paper, we prove that signal resampling based on polynomial interpolation can be reversible even for integer signals, i.e., the original signal can be reconstructed losslessly from the resampled data. By using matrix factorization, we also propose a reversible method for uniform shifted resampling and uniform scaled and shifted resampling. The new factorization yields three elementary integer-reversible matrices. The method is actually a new way to compute linear transforms and a lossless integer implementation of linear transforms with the factor matrices. It can be applied to integer signals by in-place integer-reversible computation, which needs no auxiliary memory to keep the original sample data for the transformation during the process or for ldquoundordquo recovery after the process. Some examples of low-order resampling solutions are also presented in this paper and our experiments show that the resampling error relative to the original signal is comparable to that of the traditional irreversible resampling.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2008.2008243</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2009-02, Vol.57 (2), p.516-525 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_pascalfrancis_primary_21172427 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Attenuation Discrete transforms Exact sciences and technology Factorial polynomials Factorization Frequency Image processing Image reconstruction Image sampling Information, signal and communications theory integer-to-integer transforms Integers Interpolation Mathematical analysis Matrices Miscellaneous PLUS factorization of matrices Polynomials Resampling Signal processing Signal sampling Stirling numbers Studies Telecommunications and information theory Transforms |
title | Reversible Resampling of Integer Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversible%20Resampling%20of%20Integer%20Signals&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Pengwei%20Hao,%20Pengwei%20Hao&rft.date=2009-02-01&rft.volume=57&rft.issue=2&rft.spage=516&rft.epage=525&rft.pages=516-525&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2008.2008243&rft_dat=%3Cproquest_RIE%3E34922953%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861132305&rft_id=info:pmid/&rft_ieee_id=4663930&rfr_iscdi=true |