Comprehensive Electromagnetic Modeling of On-Chip Switching Noise Generation and Coupling
A comprehensive modeling methodology is presented for the investigation of on-chip noise generation and coupling due to power switching. The backbone of the methodology is an electromagnetic model for the on-chip portion of the power grid. This allows for the impact of the displacement current densi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on advanced packaging 2008-11, Vol.31 (4), p.841-854 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 854 |
---|---|
container_issue | 4 |
container_start_page | 841 |
container_title | IEEE transactions on advanced packaging |
container_volume | 31 |
creator | Jae-Yong Ihm In Jae Chung Manetas, G. Cangellaris, A. |
description | A comprehensive modeling methodology is presented for the investigation of on-chip noise generation and coupling due to power switching. The backbone of the methodology is an electromagnetic model for the on-chip portion of the power grid. This allows for the impact of the displacement current density and, hence, electromagnetic retardation, to be taken into account in the accurate modeling of the power grid behavior at picosecond switching speeds. In this manner, and through the interfacing of this model with an electromagnetic model for the package portion of the power grid, which is described in terms of a multiport rational matrix transfer function, the impact of package-chip electrical interactions on switching noise can be modeled with electromagnetic accuracy. The electromagnetic model for the power grid is complemented by a resistance-capacitance model for the semiconductor substrate, which is capable of modeling local substrate induced noise coupling between neighboring circuits. Finally, distributed resistance, inductance, capacitance and conductance circuits for signal wires are extracted and used to provide for a transmission line-based modeling of crosstalk and power grid induced signal degradation. Transient simulations using the proposed comprehensive model are carried out using a hybrid time-domain integration scheme which combines a SPICE-like engine for the analysis of all circuit netlists and the nonlinear drivers incorporated in the model with a numerical integration algorithm suitable for the expedient update of the state variables in the discrete electromagnetic model for the power grid. |
doi_str_mv | 10.1109/TADVP.2008.2005013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_21107688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4674536</ieee_id><sourcerecordid>36322781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-20258fbcca7ea26cd181d36fd3112e069d1e19dcd20f1350f7096813783a9c793</originalsourceid><addsrcrecordid>eNp9kUFP4zAQhS0E0kJ3_8ByiZCAU8BjJ7FzRKEUJFiQtiBxsowzoUapHex00f57Elpx4MBlPBp_72nsR8hvoCcAtDydn50_3J0wSuVYcgp8i-xCnou0LCXdHnsGKeeM_yB7Mb5QCpnM2C55rPyyC7hAF-0_TKYtmj74pX522FuT3PgaW-ueE98kty6tFrZL_r7Z3izG4R9vIyYzdBh0b71LtKuTyq-6UfKT7DS6jfhrc07I_cV0Xl2m17ezq-rsOjVcij5llOWyeTJGC9SsMDVIqHnR1ByAIS3KGhDK2tSMNsBz2ghaFhK4kFyXRpR8Qo7Xvl3wryuMvVraaLBttUO_ikqKnGYUGB_Io29JXnDGxOA9IQdfwBe_Cm54hZIFH_5X5qMbW0Mm-BgDNqoLdqnDfwVUjaGoj1DUGIrahDKIDjfOOhrdNkE7Y-Onkg06UUg5cPtrziLi53VWiCwftnwH2uGUNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863005853</pqid></control><display><type>article</type><title>Comprehensive Electromagnetic Modeling of On-Chip Switching Noise Generation and Coupling</title><source>IEEE Electronic Library (IEL)</source><creator>Jae-Yong Ihm ; In Jae Chung ; Manetas, G. ; Cangellaris, A.</creator><creatorcontrib>Jae-Yong Ihm ; In Jae Chung ; Manetas, G. ; Cangellaris, A.</creatorcontrib><description>A comprehensive modeling methodology is presented for the investigation of on-chip noise generation and coupling due to power switching. The backbone of the methodology is an electromagnetic model for the on-chip portion of the power grid. This allows for the impact of the displacement current density and, hence, electromagnetic retardation, to be taken into account in the accurate modeling of the power grid behavior at picosecond switching speeds. In this manner, and through the interfacing of this model with an electromagnetic model for the package portion of the power grid, which is described in terms of a multiport rational matrix transfer function, the impact of package-chip electrical interactions on switching noise can be modeled with electromagnetic accuracy. The electromagnetic model for the power grid is complemented by a resistance-capacitance model for the semiconductor substrate, which is capable of modeling local substrate induced noise coupling between neighboring circuits. Finally, distributed resistance, inductance, capacitance and conductance circuits for signal wires are extracted and used to provide for a transmission line-based modeling of crosstalk and power grid induced signal degradation. Transient simulations using the proposed comprehensive model are carried out using a hybrid time-domain integration scheme which combines a SPICE-like engine for the analysis of all circuit netlists and the nonlinear drivers incorporated in the model with a numerical integration algorithm suitable for the expedient update of the state variables in the discrete electromagnetic model for the power grid.</description><identifier>ISSN: 1521-3323</identifier><identifier>EISSN: 1557-9980</identifier><identifier>DOI: 10.1109/TADVP.2008.2005013</identifier><identifier>CODEN: ITAPFZ</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Circuit noise ; Circuits ; Crosstalk ; Design. Technologies. Operation analysis. Testing ; Electric power generation ; Electromagnetic coupling ; Electromagnetic interference ; Electromagnetic modeling ; Electronics ; Exact sciences and technology ; Finite-difference time-domain/simulation program with integrated circuit emphasis (FDTD/SPICE) hybrid transient simulation ; Integrated circuits ; Joining ; Mathematical analysis ; Mathematical models ; Methodology ; Noise generators ; on-chip power grid switching ; power grid common-impedance coupling ; Power grids ; Semiconductor device noise ; Semiconductor device packaging ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; substrate noise coupling ; Substrates ; Switching ; switching noise analysis</subject><ispartof>IEEE transactions on advanced packaging, 2008-11, Vol.31 (4), p.841-854</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-20258fbcca7ea26cd181d36fd3112e069d1e19dcd20f1350f7096813783a9c793</citedby><cites>FETCH-LOGICAL-c387t-20258fbcca7ea26cd181d36fd3112e069d1e19dcd20f1350f7096813783a9c793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4674536$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4674536$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21107688$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jae-Yong Ihm</creatorcontrib><creatorcontrib>In Jae Chung</creatorcontrib><creatorcontrib>Manetas, G.</creatorcontrib><creatorcontrib>Cangellaris, A.</creatorcontrib><title>Comprehensive Electromagnetic Modeling of On-Chip Switching Noise Generation and Coupling</title><title>IEEE transactions on advanced packaging</title><addtitle>TADVP</addtitle><description>A comprehensive modeling methodology is presented for the investigation of on-chip noise generation and coupling due to power switching. The backbone of the methodology is an electromagnetic model for the on-chip portion of the power grid. This allows for the impact of the displacement current density and, hence, electromagnetic retardation, to be taken into account in the accurate modeling of the power grid behavior at picosecond switching speeds. In this manner, and through the interfacing of this model with an electromagnetic model for the package portion of the power grid, which is described in terms of a multiport rational matrix transfer function, the impact of package-chip electrical interactions on switching noise can be modeled with electromagnetic accuracy. The electromagnetic model for the power grid is complemented by a resistance-capacitance model for the semiconductor substrate, which is capable of modeling local substrate induced noise coupling between neighboring circuits. Finally, distributed resistance, inductance, capacitance and conductance circuits for signal wires are extracted and used to provide for a transmission line-based modeling of crosstalk and power grid induced signal degradation. Transient simulations using the proposed comprehensive model are carried out using a hybrid time-domain integration scheme which combines a SPICE-like engine for the analysis of all circuit netlists and the nonlinear drivers incorporated in the model with a numerical integration algorithm suitable for the expedient update of the state variables in the discrete electromagnetic model for the power grid.</description><subject>Applied sciences</subject><subject>Circuit noise</subject><subject>Circuits</subject><subject>Crosstalk</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electric power generation</subject><subject>Electromagnetic coupling</subject><subject>Electromagnetic interference</subject><subject>Electromagnetic modeling</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Finite-difference time-domain/simulation program with integrated circuit emphasis (FDTD/SPICE) hybrid transient simulation</subject><subject>Integrated circuits</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Noise generators</subject><subject>on-chip power grid switching</subject><subject>power grid common-impedance coupling</subject><subject>Power grids</subject><subject>Semiconductor device noise</subject><subject>Semiconductor device packaging</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>substrate noise coupling</subject><subject>Substrates</subject><subject>Switching</subject><subject>switching noise analysis</subject><issn>1521-3323</issn><issn>1557-9980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUFP4zAQhS0E0kJ3_8ByiZCAU8BjJ7FzRKEUJFiQtiBxsowzoUapHex00f57Elpx4MBlPBp_72nsR8hvoCcAtDydn50_3J0wSuVYcgp8i-xCnou0LCXdHnsGKeeM_yB7Mb5QCpnM2C55rPyyC7hAF-0_TKYtmj74pX522FuT3PgaW-ueE98kty6tFrZL_r7Z3izG4R9vIyYzdBh0b71LtKuTyq-6UfKT7DS6jfhrc07I_cV0Xl2m17ezq-rsOjVcij5llOWyeTJGC9SsMDVIqHnR1ByAIS3KGhDK2tSMNsBz2ghaFhK4kFyXRpR8Qo7Xvl3wryuMvVraaLBttUO_ikqKnGYUGB_Io29JXnDGxOA9IQdfwBe_Cm54hZIFH_5X5qMbW0Mm-BgDNqoLdqnDfwVUjaGoj1DUGIrahDKIDjfOOhrdNkE7Y-Onkg06UUg5cPtrziLi53VWiCwftnwH2uGUNg</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Jae-Yong Ihm</creator><creator>In Jae Chung</creator><creator>Manetas, G.</creator><creator>Cangellaris, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20081101</creationdate><title>Comprehensive Electromagnetic Modeling of On-Chip Switching Noise Generation and Coupling</title><author>Jae-Yong Ihm ; In Jae Chung ; Manetas, G. ; Cangellaris, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-20258fbcca7ea26cd181d36fd3112e069d1e19dcd20f1350f7096813783a9c793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Circuit noise</topic><topic>Circuits</topic><topic>Crosstalk</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electric power generation</topic><topic>Electromagnetic coupling</topic><topic>Electromagnetic interference</topic><topic>Electromagnetic modeling</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Finite-difference time-domain/simulation program with integrated circuit emphasis (FDTD/SPICE) hybrid transient simulation</topic><topic>Integrated circuits</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Noise generators</topic><topic>on-chip power grid switching</topic><topic>power grid common-impedance coupling</topic><topic>Power grids</topic><topic>Semiconductor device noise</topic><topic>Semiconductor device packaging</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>substrate noise coupling</topic><topic>Substrates</topic><topic>Switching</topic><topic>switching noise analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Jae-Yong Ihm</creatorcontrib><creatorcontrib>In Jae Chung</creatorcontrib><creatorcontrib>Manetas, G.</creatorcontrib><creatorcontrib>Cangellaris, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on advanced packaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jae-Yong Ihm</au><au>In Jae Chung</au><au>Manetas, G.</au><au>Cangellaris, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Electromagnetic Modeling of On-Chip Switching Noise Generation and Coupling</atitle><jtitle>IEEE transactions on advanced packaging</jtitle><stitle>TADVP</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>31</volume><issue>4</issue><spage>841</spage><epage>854</epage><pages>841-854</pages><issn>1521-3323</issn><eissn>1557-9980</eissn><coden>ITAPFZ</coden><abstract>A comprehensive modeling methodology is presented for the investigation of on-chip noise generation and coupling due to power switching. The backbone of the methodology is an electromagnetic model for the on-chip portion of the power grid. This allows for the impact of the displacement current density and, hence, electromagnetic retardation, to be taken into account in the accurate modeling of the power grid behavior at picosecond switching speeds. In this manner, and through the interfacing of this model with an electromagnetic model for the package portion of the power grid, which is described in terms of a multiport rational matrix transfer function, the impact of package-chip electrical interactions on switching noise can be modeled with electromagnetic accuracy. The electromagnetic model for the power grid is complemented by a resistance-capacitance model for the semiconductor substrate, which is capable of modeling local substrate induced noise coupling between neighboring circuits. Finally, distributed resistance, inductance, capacitance and conductance circuits for signal wires are extracted and used to provide for a transmission line-based modeling of crosstalk and power grid induced signal degradation. Transient simulations using the proposed comprehensive model are carried out using a hybrid time-domain integration scheme which combines a SPICE-like engine for the analysis of all circuit netlists and the nonlinear drivers incorporated in the model with a numerical integration algorithm suitable for the expedient update of the state variables in the discrete electromagnetic model for the power grid.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TADVP.2008.2005013</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1521-3323 |
ispartof | IEEE transactions on advanced packaging, 2008-11, Vol.31 (4), p.841-854 |
issn | 1521-3323 1557-9980 |
language | eng |
recordid | cdi_pascalfrancis_primary_21107688 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Circuit noise Circuits Crosstalk Design. Technologies. Operation analysis. Testing Electric power generation Electromagnetic coupling Electromagnetic interference Electromagnetic modeling Electronics Exact sciences and technology Finite-difference time-domain/simulation program with integrated circuit emphasis (FDTD/SPICE) hybrid transient simulation Integrated circuits Joining Mathematical analysis Mathematical models Methodology Noise generators on-chip power grid switching power grid common-impedance coupling Power grids Semiconductor device noise Semiconductor device packaging Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors substrate noise coupling Substrates Switching switching noise analysis |
title | Comprehensive Electromagnetic Modeling of On-Chip Switching Noise Generation and Coupling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A13%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Electromagnetic%20Modeling%20of%20On-Chip%20Switching%20Noise%20Generation%20and%20Coupling&rft.jtitle=IEEE%20transactions%20on%20advanced%20packaging&rft.au=Jae-Yong%20Ihm&rft.date=2008-11-01&rft.volume=31&rft.issue=4&rft.spage=841&rft.epage=854&rft.pages=841-854&rft.issn=1521-3323&rft.eissn=1557-9980&rft.coden=ITAPFZ&rft_id=info:doi/10.1109/TADVP.2008.2005013&rft_dat=%3Cproquest_RIE%3E36322781%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863005853&rft_id=info:pmid/&rft_ieee_id=4674536&rfr_iscdi=true |