Comprehensive Electromagnetic Modeling of On-Chip Switching Noise Generation and Coupling

A comprehensive modeling methodology is presented for the investigation of on-chip noise generation and coupling due to power switching. The backbone of the methodology is an electromagnetic model for the on-chip portion of the power grid. This allows for the impact of the displacement current densi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on advanced packaging 2008-11, Vol.31 (4), p.841-854
Hauptverfasser: Jae-Yong Ihm, In Jae Chung, Manetas, G., Cangellaris, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 854
container_issue 4
container_start_page 841
container_title IEEE transactions on advanced packaging
container_volume 31
creator Jae-Yong Ihm
In Jae Chung
Manetas, G.
Cangellaris, A.
description A comprehensive modeling methodology is presented for the investigation of on-chip noise generation and coupling due to power switching. The backbone of the methodology is an electromagnetic model for the on-chip portion of the power grid. This allows for the impact of the displacement current density and, hence, electromagnetic retardation, to be taken into account in the accurate modeling of the power grid behavior at picosecond switching speeds. In this manner, and through the interfacing of this model with an electromagnetic model for the package portion of the power grid, which is described in terms of a multiport rational matrix transfer function, the impact of package-chip electrical interactions on switching noise can be modeled with electromagnetic accuracy. The electromagnetic model for the power grid is complemented by a resistance-capacitance model for the semiconductor substrate, which is capable of modeling local substrate induced noise coupling between neighboring circuits. Finally, distributed resistance, inductance, capacitance and conductance circuits for signal wires are extracted and used to provide for a transmission line-based modeling of crosstalk and power grid induced signal degradation. Transient simulations using the proposed comprehensive model are carried out using a hybrid time-domain integration scheme which combines a SPICE-like engine for the analysis of all circuit netlists and the nonlinear drivers incorporated in the model with a numerical integration algorithm suitable for the expedient update of the state variables in the discrete electromagnetic model for the power grid.
doi_str_mv 10.1109/TADVP.2008.2005013
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_21107688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4674536</ieee_id><sourcerecordid>36322781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-20258fbcca7ea26cd181d36fd3112e069d1e19dcd20f1350f7096813783a9c793</originalsourceid><addsrcrecordid>eNp9kUFP4zAQhS0E0kJ3_8ByiZCAU8BjJ7FzRKEUJFiQtiBxsowzoUapHex00f57Elpx4MBlPBp_72nsR8hvoCcAtDydn50_3J0wSuVYcgp8i-xCnou0LCXdHnsGKeeM_yB7Mb5QCpnM2C55rPyyC7hAF-0_TKYtmj74pX522FuT3PgaW-ueE98kty6tFrZL_r7Z3izG4R9vIyYzdBh0b71LtKuTyq-6UfKT7DS6jfhrc07I_cV0Xl2m17ezq-rsOjVcij5llOWyeTJGC9SsMDVIqHnR1ByAIS3KGhDK2tSMNsBz2ghaFhK4kFyXRpR8Qo7Xvl3wryuMvVraaLBttUO_ikqKnGYUGB_Io29JXnDGxOA9IQdfwBe_Cm54hZIFH_5X5qMbW0Mm-BgDNqoLdqnDfwVUjaGoj1DUGIrahDKIDjfOOhrdNkE7Y-Onkg06UUg5cPtrziLi53VWiCwftnwH2uGUNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863005853</pqid></control><display><type>article</type><title>Comprehensive Electromagnetic Modeling of On-Chip Switching Noise Generation and Coupling</title><source>IEEE Electronic Library (IEL)</source><creator>Jae-Yong Ihm ; In Jae Chung ; Manetas, G. ; Cangellaris, A.</creator><creatorcontrib>Jae-Yong Ihm ; In Jae Chung ; Manetas, G. ; Cangellaris, A.</creatorcontrib><description>A comprehensive modeling methodology is presented for the investigation of on-chip noise generation and coupling due to power switching. The backbone of the methodology is an electromagnetic model for the on-chip portion of the power grid. This allows for the impact of the displacement current density and, hence, electromagnetic retardation, to be taken into account in the accurate modeling of the power grid behavior at picosecond switching speeds. In this manner, and through the interfacing of this model with an electromagnetic model for the package portion of the power grid, which is described in terms of a multiport rational matrix transfer function, the impact of package-chip electrical interactions on switching noise can be modeled with electromagnetic accuracy. The electromagnetic model for the power grid is complemented by a resistance-capacitance model for the semiconductor substrate, which is capable of modeling local substrate induced noise coupling between neighboring circuits. Finally, distributed resistance, inductance, capacitance and conductance circuits for signal wires are extracted and used to provide for a transmission line-based modeling of crosstalk and power grid induced signal degradation. Transient simulations using the proposed comprehensive model are carried out using a hybrid time-domain integration scheme which combines a SPICE-like engine for the analysis of all circuit netlists and the nonlinear drivers incorporated in the model with a numerical integration algorithm suitable for the expedient update of the state variables in the discrete electromagnetic model for the power grid.</description><identifier>ISSN: 1521-3323</identifier><identifier>EISSN: 1557-9980</identifier><identifier>DOI: 10.1109/TADVP.2008.2005013</identifier><identifier>CODEN: ITAPFZ</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Circuit noise ; Circuits ; Crosstalk ; Design. Technologies. Operation analysis. Testing ; Electric power generation ; Electromagnetic coupling ; Electromagnetic interference ; Electromagnetic modeling ; Electronics ; Exact sciences and technology ; Finite-difference time-domain/simulation program with integrated circuit emphasis (FDTD/SPICE) hybrid transient simulation ; Integrated circuits ; Joining ; Mathematical analysis ; Mathematical models ; Methodology ; Noise generators ; on-chip power grid switching ; power grid common-impedance coupling ; Power grids ; Semiconductor device noise ; Semiconductor device packaging ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; substrate noise coupling ; Substrates ; Switching ; switching noise analysis</subject><ispartof>IEEE transactions on advanced packaging, 2008-11, Vol.31 (4), p.841-854</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-20258fbcca7ea26cd181d36fd3112e069d1e19dcd20f1350f7096813783a9c793</citedby><cites>FETCH-LOGICAL-c387t-20258fbcca7ea26cd181d36fd3112e069d1e19dcd20f1350f7096813783a9c793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4674536$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4674536$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21107688$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jae-Yong Ihm</creatorcontrib><creatorcontrib>In Jae Chung</creatorcontrib><creatorcontrib>Manetas, G.</creatorcontrib><creatorcontrib>Cangellaris, A.</creatorcontrib><title>Comprehensive Electromagnetic Modeling of On-Chip Switching Noise Generation and Coupling</title><title>IEEE transactions on advanced packaging</title><addtitle>TADVP</addtitle><description>A comprehensive modeling methodology is presented for the investigation of on-chip noise generation and coupling due to power switching. The backbone of the methodology is an electromagnetic model for the on-chip portion of the power grid. This allows for the impact of the displacement current density and, hence, electromagnetic retardation, to be taken into account in the accurate modeling of the power grid behavior at picosecond switching speeds. In this manner, and through the interfacing of this model with an electromagnetic model for the package portion of the power grid, which is described in terms of a multiport rational matrix transfer function, the impact of package-chip electrical interactions on switching noise can be modeled with electromagnetic accuracy. The electromagnetic model for the power grid is complemented by a resistance-capacitance model for the semiconductor substrate, which is capable of modeling local substrate induced noise coupling between neighboring circuits. Finally, distributed resistance, inductance, capacitance and conductance circuits for signal wires are extracted and used to provide for a transmission line-based modeling of crosstalk and power grid induced signal degradation. Transient simulations using the proposed comprehensive model are carried out using a hybrid time-domain integration scheme which combines a SPICE-like engine for the analysis of all circuit netlists and the nonlinear drivers incorporated in the model with a numerical integration algorithm suitable for the expedient update of the state variables in the discrete electromagnetic model for the power grid.</description><subject>Applied sciences</subject><subject>Circuit noise</subject><subject>Circuits</subject><subject>Crosstalk</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electric power generation</subject><subject>Electromagnetic coupling</subject><subject>Electromagnetic interference</subject><subject>Electromagnetic modeling</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Finite-difference time-domain/simulation program with integrated circuit emphasis (FDTD/SPICE) hybrid transient simulation</subject><subject>Integrated circuits</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Noise generators</subject><subject>on-chip power grid switching</subject><subject>power grid common-impedance coupling</subject><subject>Power grids</subject><subject>Semiconductor device noise</subject><subject>Semiconductor device packaging</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>substrate noise coupling</subject><subject>Substrates</subject><subject>Switching</subject><subject>switching noise analysis</subject><issn>1521-3323</issn><issn>1557-9980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUFP4zAQhS0E0kJ3_8ByiZCAU8BjJ7FzRKEUJFiQtiBxsowzoUapHex00f57Elpx4MBlPBp_72nsR8hvoCcAtDydn50_3J0wSuVYcgp8i-xCnou0LCXdHnsGKeeM_yB7Mb5QCpnM2C55rPyyC7hAF-0_TKYtmj74pX522FuT3PgaW-ueE98kty6tFrZL_r7Z3izG4R9vIyYzdBh0b71LtKuTyq-6UfKT7DS6jfhrc07I_cV0Xl2m17ezq-rsOjVcij5llOWyeTJGC9SsMDVIqHnR1ByAIS3KGhDK2tSMNsBz2ghaFhK4kFyXRpR8Qo7Xvl3wryuMvVraaLBttUO_ikqKnGYUGB_Io29JXnDGxOA9IQdfwBe_Cm54hZIFH_5X5qMbW0Mm-BgDNqoLdqnDfwVUjaGoj1DUGIrahDKIDjfOOhrdNkE7Y-Onkg06UUg5cPtrziLi53VWiCwftnwH2uGUNg</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Jae-Yong Ihm</creator><creator>In Jae Chung</creator><creator>Manetas, G.</creator><creator>Cangellaris, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20081101</creationdate><title>Comprehensive Electromagnetic Modeling of On-Chip Switching Noise Generation and Coupling</title><author>Jae-Yong Ihm ; In Jae Chung ; Manetas, G. ; Cangellaris, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-20258fbcca7ea26cd181d36fd3112e069d1e19dcd20f1350f7096813783a9c793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Circuit noise</topic><topic>Circuits</topic><topic>Crosstalk</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electric power generation</topic><topic>Electromagnetic coupling</topic><topic>Electromagnetic interference</topic><topic>Electromagnetic modeling</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Finite-difference time-domain/simulation program with integrated circuit emphasis (FDTD/SPICE) hybrid transient simulation</topic><topic>Integrated circuits</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Noise generators</topic><topic>on-chip power grid switching</topic><topic>power grid common-impedance coupling</topic><topic>Power grids</topic><topic>Semiconductor device noise</topic><topic>Semiconductor device packaging</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>substrate noise coupling</topic><topic>Substrates</topic><topic>Switching</topic><topic>switching noise analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Jae-Yong Ihm</creatorcontrib><creatorcontrib>In Jae Chung</creatorcontrib><creatorcontrib>Manetas, G.</creatorcontrib><creatorcontrib>Cangellaris, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on advanced packaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jae-Yong Ihm</au><au>In Jae Chung</au><au>Manetas, G.</au><au>Cangellaris, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Electromagnetic Modeling of On-Chip Switching Noise Generation and Coupling</atitle><jtitle>IEEE transactions on advanced packaging</jtitle><stitle>TADVP</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>31</volume><issue>4</issue><spage>841</spage><epage>854</epage><pages>841-854</pages><issn>1521-3323</issn><eissn>1557-9980</eissn><coden>ITAPFZ</coden><abstract>A comprehensive modeling methodology is presented for the investigation of on-chip noise generation and coupling due to power switching. The backbone of the methodology is an electromagnetic model for the on-chip portion of the power grid. This allows for the impact of the displacement current density and, hence, electromagnetic retardation, to be taken into account in the accurate modeling of the power grid behavior at picosecond switching speeds. In this manner, and through the interfacing of this model with an electromagnetic model for the package portion of the power grid, which is described in terms of a multiport rational matrix transfer function, the impact of package-chip electrical interactions on switching noise can be modeled with electromagnetic accuracy. The electromagnetic model for the power grid is complemented by a resistance-capacitance model for the semiconductor substrate, which is capable of modeling local substrate induced noise coupling between neighboring circuits. Finally, distributed resistance, inductance, capacitance and conductance circuits for signal wires are extracted and used to provide for a transmission line-based modeling of crosstalk and power grid induced signal degradation. Transient simulations using the proposed comprehensive model are carried out using a hybrid time-domain integration scheme which combines a SPICE-like engine for the analysis of all circuit netlists and the nonlinear drivers incorporated in the model with a numerical integration algorithm suitable for the expedient update of the state variables in the discrete electromagnetic model for the power grid.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TADVP.2008.2005013</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1521-3323
ispartof IEEE transactions on advanced packaging, 2008-11, Vol.31 (4), p.841-854
issn 1521-3323
1557-9980
language eng
recordid cdi_pascalfrancis_primary_21107688
source IEEE Electronic Library (IEL)
subjects Applied sciences
Circuit noise
Circuits
Crosstalk
Design. Technologies. Operation analysis. Testing
Electric power generation
Electromagnetic coupling
Electromagnetic interference
Electromagnetic modeling
Electronics
Exact sciences and technology
Finite-difference time-domain/simulation program with integrated circuit emphasis (FDTD/SPICE) hybrid transient simulation
Integrated circuits
Joining
Mathematical analysis
Mathematical models
Methodology
Noise generators
on-chip power grid switching
power grid common-impedance coupling
Power grids
Semiconductor device noise
Semiconductor device packaging
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
substrate noise coupling
Substrates
Switching
switching noise analysis
title Comprehensive Electromagnetic Modeling of On-Chip Switching Noise Generation and Coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A13%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Electromagnetic%20Modeling%20of%20On-Chip%20Switching%20Noise%20Generation%20and%20Coupling&rft.jtitle=IEEE%20transactions%20on%20advanced%20packaging&rft.au=Jae-Yong%20Ihm&rft.date=2008-11-01&rft.volume=31&rft.issue=4&rft.spage=841&rft.epage=854&rft.pages=841-854&rft.issn=1521-3323&rft.eissn=1557-9980&rft.coden=ITAPFZ&rft_id=info:doi/10.1109/TADVP.2008.2005013&rft_dat=%3Cproquest_RIE%3E36322781%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863005853&rft_id=info:pmid/&rft_ieee_id=4674536&rfr_iscdi=true