Estimation of the Parameters of Sinusoidal Signals in Non-Gaussian Noise

Accurate estimation of the amplitude and frequency parameters of sinusoidal signals from noisy observations is an important problem in many signal processing applications. In this paper, the problem is investigated under the assumption of non-Gaussian noise in general and Laplace noise in particular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2009-01, Vol.57 (1), p.62-72
Hauptverfasser: LI, Ta-Hsin, SONG, Kai-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 62
container_title IEEE transactions on signal processing
container_volume 57
creator LI, Ta-Hsin
SONG, Kai-Sheng
description Accurate estimation of the amplitude and frequency parameters of sinusoidal signals from noisy observations is an important problem in many signal processing applications. In this paper, the problem is investigated under the assumption of non-Gaussian noise in general and Laplace noise in particular. It is proven mathematically that the maximum likelihood estimator derived under the condition of Laplace white noise is able to attain an asymptotic Cramer-Rao lower bound which is one half of that achieved by periodogram maximization and nonlinear least squares. It is also proven that when applied to non-Laplace situations, the Laplace maximum likelihood estimator, which may also be referred to as the nonlinear least-absolute-deviations estimator, can achieve an even higher statistical efficiency especially when the noise distribution has heavy tails. A computational procedure is proposed to overcome the difficulty of local extrema in the likelihood function. Simulation results are provided to validate the analytical findings.
doi_str_mv 10.1109/TSP.2008.2007346
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_21020781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4663903</ieee_id><sourcerecordid>875040547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6ef52d4b90ac95ed3ef0f55b9d03e095a04e8b8af22fcf5a68579dbca986d6833</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhosouK7eBS9FUE9dJ59NjiLrB4gKruAtZNuJZum2mrQH_70pu3jw4CWZyTzvDJM3y44JzAgBfbl4eZ5RADUeJeNyJ5sQzUkBvJS7KQbBCqHKt_3sIMYVAOFcy0l2N4-9X9ved23eubz_wPzZBrvGHkMcX158O8TO17ZJ4Xtrm5j7Nn_s2uLWDjF6OyY-4mG251IRj7b3NHu9mS-u74qHp9v766uHomKK9YVEJ2jNlxpspQXWDB04IZa6BoaghQWOaqmso9RVTlipRKnrZWW1krVUjE2zi03fz9B9DRh7s_axwqaxLXZDNKoUwEHwMpHn_5KMa1qCIAk8_QOuuiGMqxolCWGUEpog2EBV6GIM6MxnSB8Xvg0BMzpgkgNmdMBsHUiSs21fGyvbuGDbysdfHSVAoVTj_JMN5xHxt8ylZBoY-wFmLo3b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861132212</pqid></control><display><type>article</type><title>Estimation of the Parameters of Sinusoidal Signals in Non-Gaussian Noise</title><source>IEEE Electronic Library (IEL)</source><creator>LI, Ta-Hsin ; SONG, Kai-Sheng</creator><creatorcontrib>LI, Ta-Hsin ; SONG, Kai-Sheng</creatorcontrib><description>Accurate estimation of the amplitude and frequency parameters of sinusoidal signals from noisy observations is an important problem in many signal processing applications. In this paper, the problem is investigated under the assumption of non-Gaussian noise in general and Laplace noise in particular. It is proven mathematically that the maximum likelihood estimator derived under the condition of Laplace white noise is able to attain an asymptotic Cramer-Rao lower bound which is one half of that achieved by periodogram maximization and nonlinear least squares. It is also proven that when applied to non-Laplace situations, the Laplace maximum likelihood estimator, which may also be referred to as the nonlinear least-absolute-deviations estimator, can achieve an even higher statistical efficiency especially when the noise distribution has heavy tails. A computational procedure is proposed to overcome the difficulty of local extrema in the likelihood function. Simulation results are provided to validate the analytical findings.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2008.2007346</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Amplitude estimation ; Applied sciences ; Asymptotic properties ; Computational modeling ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Frequency estimation ; harmonic retrieval ; heavy tail ; impulsive noise ; Information, signal and communications theory ; Laplace distribution ; least absolute deviation ; Least squares approximation ; Mathematical analysis ; Maximization ; Maximum likelihood estimation ; Maximum likelihood estimators ; Miscellaneous ; Noise ; Noise level ; Non-Gaussian ; Nonlinearity ; Parameter estimation ; Probability distribution ; robust ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; spectral analysis ; Telecommunications and information theory ; White noise</subject><ispartof>IEEE transactions on signal processing, 2009-01, Vol.57 (1), p.62-72</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-6ef52d4b90ac95ed3ef0f55b9d03e095a04e8b8af22fcf5a68579dbca986d6833</citedby><cites>FETCH-LOGICAL-c383t-6ef52d4b90ac95ed3ef0f55b9d03e095a04e8b8af22fcf5a68579dbca986d6833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4663903$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4663903$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21020781$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LI, Ta-Hsin</creatorcontrib><creatorcontrib>SONG, Kai-Sheng</creatorcontrib><title>Estimation of the Parameters of Sinusoidal Signals in Non-Gaussian Noise</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Accurate estimation of the amplitude and frequency parameters of sinusoidal signals from noisy observations is an important problem in many signal processing applications. In this paper, the problem is investigated under the assumption of non-Gaussian noise in general and Laplace noise in particular. It is proven mathematically that the maximum likelihood estimator derived under the condition of Laplace white noise is able to attain an asymptotic Cramer-Rao lower bound which is one half of that achieved by periodogram maximization and nonlinear least squares. It is also proven that when applied to non-Laplace situations, the Laplace maximum likelihood estimator, which may also be referred to as the nonlinear least-absolute-deviations estimator, can achieve an even higher statistical efficiency especially when the noise distribution has heavy tails. A computational procedure is proposed to overcome the difficulty of local extrema in the likelihood function. Simulation results are provided to validate the analytical findings.</description><subject>Amplitude estimation</subject><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Computational modeling</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Frequency estimation</subject><subject>harmonic retrieval</subject><subject>heavy tail</subject><subject>impulsive noise</subject><subject>Information, signal and communications theory</subject><subject>Laplace distribution</subject><subject>least absolute deviation</subject><subject>Least squares approximation</subject><subject>Mathematical analysis</subject><subject>Maximization</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Miscellaneous</subject><subject>Noise</subject><subject>Noise level</subject><subject>Non-Gaussian</subject><subject>Nonlinearity</subject><subject>Parameter estimation</subject><subject>Probability distribution</subject><subject>robust</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>spectral analysis</subject><subject>Telecommunications and information theory</subject><subject>White noise</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1LxDAQhosouK7eBS9FUE9dJ59NjiLrB4gKruAtZNuJZum2mrQH_70pu3jw4CWZyTzvDJM3y44JzAgBfbl4eZ5RADUeJeNyJ5sQzUkBvJS7KQbBCqHKt_3sIMYVAOFcy0l2N4-9X9ved23eubz_wPzZBrvGHkMcX158O8TO17ZJ4Xtrm5j7Nn_s2uLWDjF6OyY-4mG251IRj7b3NHu9mS-u74qHp9v766uHomKK9YVEJ2jNlxpspQXWDB04IZa6BoaghQWOaqmso9RVTlipRKnrZWW1krVUjE2zi03fz9B9DRh7s_axwqaxLXZDNKoUwEHwMpHn_5KMa1qCIAk8_QOuuiGMqxolCWGUEpog2EBV6GIM6MxnSB8Xvg0BMzpgkgNmdMBsHUiSs21fGyvbuGDbysdfHSVAoVTj_JMN5xHxt8ylZBoY-wFmLo3b</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>LI, Ta-Hsin</creator><creator>SONG, Kai-Sheng</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200901</creationdate><title>Estimation of the Parameters of Sinusoidal Signals in Non-Gaussian Noise</title><author>LI, Ta-Hsin ; SONG, Kai-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6ef52d4b90ac95ed3ef0f55b9d03e095a04e8b8af22fcf5a68579dbca986d6833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amplitude estimation</topic><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Computational modeling</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Frequency estimation</topic><topic>harmonic retrieval</topic><topic>heavy tail</topic><topic>impulsive noise</topic><topic>Information, signal and communications theory</topic><topic>Laplace distribution</topic><topic>least absolute deviation</topic><topic>Least squares approximation</topic><topic>Mathematical analysis</topic><topic>Maximization</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Miscellaneous</topic><topic>Noise</topic><topic>Noise level</topic><topic>Non-Gaussian</topic><topic>Nonlinearity</topic><topic>Parameter estimation</topic><topic>Probability distribution</topic><topic>robust</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>spectral analysis</topic><topic>Telecommunications and information theory</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LI, Ta-Hsin</creatorcontrib><creatorcontrib>SONG, Kai-Sheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI, Ta-Hsin</au><au>SONG, Kai-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the Parameters of Sinusoidal Signals in Non-Gaussian Noise</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2009-01</date><risdate>2009</risdate><volume>57</volume><issue>1</issue><spage>62</spage><epage>72</epage><pages>62-72</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Accurate estimation of the amplitude and frequency parameters of sinusoidal signals from noisy observations is an important problem in many signal processing applications. In this paper, the problem is investigated under the assumption of non-Gaussian noise in general and Laplace noise in particular. It is proven mathematically that the maximum likelihood estimator derived under the condition of Laplace white noise is able to attain an asymptotic Cramer-Rao lower bound which is one half of that achieved by periodogram maximization and nonlinear least squares. It is also proven that when applied to non-Laplace situations, the Laplace maximum likelihood estimator, which may also be referred to as the nonlinear least-absolute-deviations estimator, can achieve an even higher statistical efficiency especially when the noise distribution has heavy tails. A computational procedure is proposed to overcome the difficulty of local extrema in the likelihood function. Simulation results are provided to validate the analytical findings.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2008.2007346</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2009-01, Vol.57 (1), p.62-72
issn 1053-587X
1941-0476
language eng
recordid cdi_pascalfrancis_primary_21020781
source IEEE Electronic Library (IEL)
subjects Amplitude estimation
Applied sciences
Asymptotic properties
Computational modeling
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Frequency estimation
harmonic retrieval
heavy tail
impulsive noise
Information, signal and communications theory
Laplace distribution
least absolute deviation
Least squares approximation
Mathematical analysis
Maximization
Maximum likelihood estimation
Maximum likelihood estimators
Miscellaneous
Noise
Noise level
Non-Gaussian
Nonlinearity
Parameter estimation
Probability distribution
robust
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
spectral analysis
Telecommunications and information theory
White noise
title Estimation of the Parameters of Sinusoidal Signals in Non-Gaussian Noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20Parameters%20of%20Sinusoidal%20Signals%20in%20Non-Gaussian%20Noise&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=LI,%20Ta-Hsin&rft.date=2009-01&rft.volume=57&rft.issue=1&rft.spage=62&rft.epage=72&rft.pages=62-72&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2008.2007346&rft_dat=%3Cproquest_RIE%3E875040547%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861132212&rft_id=info:pmid/&rft_ieee_id=4663903&rfr_iscdi=true