Improved Sigma Filter for Speckle Filtering of SAR Imagery
The Lee sigma filter was developed in 1983 based on the simple concept of two-sigma probability, and it was reasonably effective in speckle filtering. However, deficiencies were discovered in producing biased estimation and in blurring and depressing strong reflected targets. The advancement of synt...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2009-01, Vol.47 (1), p.202-213 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 213 |
---|---|
container_issue | 1 |
container_start_page | 202 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 47 |
creator | Jong-Sen Lee Jen-Hung Wen Ainsworth, T.L. Kun-Shan Chen Chen, A.J. |
description | The Lee sigma filter was developed in 1983 based on the simple concept of two-sigma probability, and it was reasonably effective in speckle filtering. However, deficiencies were discovered in producing biased estimation and in blurring and depressing strong reflected targets. The advancement of synthetic aperture radar (SAR) technology with high-resolution data of large dimensions demands better and efficient speckle filtering algorithms. In this paper, we extend and improve the Lee sigma filter by eliminating these deficiencies. The bias problem is solved by redefining the sigma range based on the speckle probability density functions. To mitigate the problems of blurring and depressing strong reflective scatterers, a target signature preservation technique is developed. In addition, we incorporate the minimum-mean-square-error estimator for adaptive speckle reduction. Simulated SAR data are used to quantitatively evaluate the characteristics of this improved sigma filter and to validate its effectiveness. The proposed algorithm is applied to spaceborne and airborne SAR data to demonstrate its overall speckle filtering characteristics as compared with other algorithms. This improved sigma filter remains simple in concept and is computationally efficient but without the deficiencies of the original Lee sigma filter. |
doi_str_mv | 10.1109/TGRS.2008.2002881 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_21011179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4689358</ieee_id><sourcerecordid>36335773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-84dbeb6f8c69d99287225ef9d0a7790223b67d903684e4d3ac7574408b2acaeb3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gHgJgnpK3a_sh7dSbC0UhKael81mUlKTpu62Qv-9CQ0ePHjZgd1n3tl5ELoleEQI1s-r2TIdUYxVd1ClyBkakCRRMRacn6MBJlrEVGl6ia5C2GBMeELkAL3M651vviGP0nJd22haVnvwUdH4KN2B-6ygvyq366gponS8jOa1XYM_XqOLwlYBbvo6RB_T19XkLV68z-aT8SJ2nLF9rHieQSYK5YTOtaZKUppAoXNspdSYUpYJmWvMhOLAc2adTCTnWGXUOgsZG6KnU2770a8DhL2py-CgquwWmkMwSmjFtWa8JR__JZlgLJGSteD9H3DTHPy23cKodrhozekWIifI-SYED4XZ-bK2_mgINp1000k3nXTTS297HvpgG5ytCm-3rgy_jZRgQojssu9OXAkAv89cKM0SxX4AcIWHzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857461559</pqid></control><display><type>article</type><title>Improved Sigma Filter for Speckle Filtering of SAR Imagery</title><source>IEEE Electronic Library (IEL)</source><creator>Jong-Sen Lee ; Jen-Hung Wen ; Ainsworth, T.L. ; Kun-Shan Chen ; Chen, A.J.</creator><creatorcontrib>Jong-Sen Lee ; Jen-Hung Wen ; Ainsworth, T.L. ; Kun-Shan Chen ; Chen, A.J.</creatorcontrib><description>The Lee sigma filter was developed in 1983 based on the simple concept of two-sigma probability, and it was reasonably effective in speckle filtering. However, deficiencies were discovered in producing biased estimation and in blurring and depressing strong reflected targets. The advancement of synthetic aperture radar (SAR) technology with high-resolution data of large dimensions demands better and efficient speckle filtering algorithms. In this paper, we extend and improve the Lee sigma filter by eliminating these deficiencies. The bias problem is solved by redefining the sigma range based on the speckle probability density functions. To mitigate the problems of blurring and depressing strong reflective scatterers, a target signature preservation technique is developed. In addition, we incorporate the minimum-mean-square-error estimator for adaptive speckle reduction. Simulated SAR data are used to quantitatively evaluate the characteristics of this improved sigma filter and to validate its effectiveness. The proposed algorithm is applied to spaceborne and airborne SAR data to demonstrate its overall speckle filtering characteristics as compared with other algorithms. This improved sigma filter remains simple in concept and is computationally efficient but without the deficiencies of the original Lee sigma filter.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2008.2002881</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied geophysics ; Blurring ; Computational efficiency ; Computer simulation ; Earth sciences ; Earth, ocean, space ; Estimators ; Exact sciences and technology ; Filtering ; Filtering algorithms ; Filters ; Filtration ; Internal geophysics ; Laboratories ; Probability density function ; Radar scattering ; Remote sensing ; Sigma filter ; Spaceborne radar ; Speckle ; speckle filtering ; Synthetic aperture radar ; synthetic aperture radar (SAR)</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2009-01, Vol.47 (1), p.202-213</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-84dbeb6f8c69d99287225ef9d0a7790223b67d903684e4d3ac7574408b2acaeb3</citedby><cites>FETCH-LOGICAL-c433t-84dbeb6f8c69d99287225ef9d0a7790223b67d903684e4d3ac7574408b2acaeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4689358$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,4028,27932,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4689358$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21011179$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jong-Sen Lee</creatorcontrib><creatorcontrib>Jen-Hung Wen</creatorcontrib><creatorcontrib>Ainsworth, T.L.</creatorcontrib><creatorcontrib>Kun-Shan Chen</creatorcontrib><creatorcontrib>Chen, A.J.</creatorcontrib><title>Improved Sigma Filter for Speckle Filtering of SAR Imagery</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The Lee sigma filter was developed in 1983 based on the simple concept of two-sigma probability, and it was reasonably effective in speckle filtering. However, deficiencies were discovered in producing biased estimation and in blurring and depressing strong reflected targets. The advancement of synthetic aperture radar (SAR) technology with high-resolution data of large dimensions demands better and efficient speckle filtering algorithms. In this paper, we extend and improve the Lee sigma filter by eliminating these deficiencies. The bias problem is solved by redefining the sigma range based on the speckle probability density functions. To mitigate the problems of blurring and depressing strong reflective scatterers, a target signature preservation technique is developed. In addition, we incorporate the minimum-mean-square-error estimator for adaptive speckle reduction. Simulated SAR data are used to quantitatively evaluate the characteristics of this improved sigma filter and to validate its effectiveness. The proposed algorithm is applied to spaceborne and airborne SAR data to demonstrate its overall speckle filtering characteristics as compared with other algorithms. This improved sigma filter remains simple in concept and is computationally efficient but without the deficiencies of the original Lee sigma filter.</description><subject>Algorithms</subject><subject>Applied geophysics</subject><subject>Blurring</subject><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Filtering algorithms</subject><subject>Filters</subject><subject>Filtration</subject><subject>Internal geophysics</subject><subject>Laboratories</subject><subject>Probability density function</subject><subject>Radar scattering</subject><subject>Remote sensing</subject><subject>Sigma filter</subject><subject>Spaceborne radar</subject><subject>Speckle</subject><subject>speckle filtering</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1Lw0AQhhdRsFZ_gHgJgnpK3a_sh7dSbC0UhKael81mUlKTpu62Qv-9CQ0ePHjZgd1n3tl5ELoleEQI1s-r2TIdUYxVd1ClyBkakCRRMRacn6MBJlrEVGl6ia5C2GBMeELkAL3M651vviGP0nJd22haVnvwUdH4KN2B-6ygvyq366gponS8jOa1XYM_XqOLwlYBbvo6RB_T19XkLV68z-aT8SJ2nLF9rHieQSYK5YTOtaZKUppAoXNspdSYUpYJmWvMhOLAc2adTCTnWGXUOgsZG6KnU2770a8DhL2py-CgquwWmkMwSmjFtWa8JR__JZlgLJGSteD9H3DTHPy23cKodrhozekWIifI-SYED4XZ-bK2_mgINp1000k3nXTTS297HvpgG5ytCm-3rgy_jZRgQojssu9OXAkAv89cKM0SxX4AcIWHzQ</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Jong-Sen Lee</creator><creator>Jen-Hung Wen</creator><creator>Ainsworth, T.L.</creator><creator>Kun-Shan Chen</creator><creator>Chen, A.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>200901</creationdate><title>Improved Sigma Filter for Speckle Filtering of SAR Imagery</title><author>Jong-Sen Lee ; Jen-Hung Wen ; Ainsworth, T.L. ; Kun-Shan Chen ; Chen, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-84dbeb6f8c69d99287225ef9d0a7790223b67d903684e4d3ac7574408b2acaeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Applied geophysics</topic><topic>Blurring</topic><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Filtering algorithms</topic><topic>Filters</topic><topic>Filtration</topic><topic>Internal geophysics</topic><topic>Laboratories</topic><topic>Probability density function</topic><topic>Radar scattering</topic><topic>Remote sensing</topic><topic>Sigma filter</topic><topic>Spaceborne radar</topic><topic>Speckle</topic><topic>speckle filtering</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jong-Sen Lee</creatorcontrib><creatorcontrib>Jen-Hung Wen</creatorcontrib><creatorcontrib>Ainsworth, T.L.</creatorcontrib><creatorcontrib>Kun-Shan Chen</creatorcontrib><creatorcontrib>Chen, A.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jong-Sen Lee</au><au>Jen-Hung Wen</au><au>Ainsworth, T.L.</au><au>Kun-Shan Chen</au><au>Chen, A.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Sigma Filter for Speckle Filtering of SAR Imagery</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2009-01</date><risdate>2009</risdate><volume>47</volume><issue>1</issue><spage>202</spage><epage>213</epage><pages>202-213</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The Lee sigma filter was developed in 1983 based on the simple concept of two-sigma probability, and it was reasonably effective in speckle filtering. However, deficiencies were discovered in producing biased estimation and in blurring and depressing strong reflected targets. The advancement of synthetic aperture radar (SAR) technology with high-resolution data of large dimensions demands better and efficient speckle filtering algorithms. In this paper, we extend and improve the Lee sigma filter by eliminating these deficiencies. The bias problem is solved by redefining the sigma range based on the speckle probability density functions. To mitigate the problems of blurring and depressing strong reflective scatterers, a target signature preservation technique is developed. In addition, we incorporate the minimum-mean-square-error estimator for adaptive speckle reduction. Simulated SAR data are used to quantitatively evaluate the characteristics of this improved sigma filter and to validate its effectiveness. The proposed algorithm is applied to spaceborne and airborne SAR data to demonstrate its overall speckle filtering characteristics as compared with other algorithms. This improved sigma filter remains simple in concept and is computationally efficient but without the deficiencies of the original Lee sigma filter.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2008.2002881</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2009-01, Vol.47 (1), p.202-213 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_pascalfrancis_primary_21011179 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied geophysics Blurring Computational efficiency Computer simulation Earth sciences Earth, ocean, space Estimators Exact sciences and technology Filtering Filtering algorithms Filters Filtration Internal geophysics Laboratories Probability density function Radar scattering Remote sensing Sigma filter Spaceborne radar Speckle speckle filtering Synthetic aperture radar synthetic aperture radar (SAR) |
title | Improved Sigma Filter for Speckle Filtering of SAR Imagery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T22%3A26%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Sigma%20Filter%20for%20Speckle%20Filtering%20of%20SAR%20Imagery&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Jong-Sen%20Lee&rft.date=2009-01&rft.volume=47&rft.issue=1&rft.spage=202&rft.epage=213&rft.pages=202-213&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2008.2002881&rft_dat=%3Cproquest_RIE%3E36335773%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857461559&rft_id=info:pmid/&rft_ieee_id=4689358&rfr_iscdi=true |