Fast Analysis of Large Antenna Arrays Using the Characteristic Basis Function Method and the Adaptive Cross Approximation Algorithm
The characteristic basis function method (CBFM) has been hybridized with the adaptive cross approximation (ACA) algorithm to construct a reduced matrix equation in a time-efficient manner and to solve electrically large antenna array problems in-core, with a solve time orders of magnitude less than...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2008-11, Vol.56 (11), p.3440-3451 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3451 |
---|---|
container_issue | 11 |
container_start_page | 3440 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 56 |
creator | Maaskant, R. Mittra, R. Tijhuis, A. |
description | The characteristic basis function method (CBFM) has been hybridized with the adaptive cross approximation (ACA) algorithm to construct a reduced matrix equation in a time-efficient manner and to solve electrically large antenna array problems in-core, with a solve time orders of magnitude less than those in the conventional methods. Various numerical examples are presented that demonstrate that the proposed method has a very good accuracy, computational efficiency and reduced memory storage requirement. Specifically, we analyze large 1-D and 2-D arrays of electrically interconnected tapered slot antennas (TSAs). The entire computational domain is subdivided into many smaller subdomains, each of which supports a set of characteristic basis functions (CBFs). We also present a novel scheme for generating the CBFs that do not conform to the edge condition at the truncated edge of each subdomain, and provide a minor overlap between the CBFs in adjacent subdomains. As a result, the CBFs preserve the continuity of the surface current across the subdomain interfaces, thereby circumventing the need to use separate ldquoconnectionrdquo basis functions. |
doi_str_mv | 10.1109/TAP.2008.2005471 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_20897084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4685922</ieee_id><sourcerecordid>2545526491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-6f42eba60d8b36d1e1ff656cd254241e5c39bb2f0d2127d30057039d493ed05a3</originalsourceid><addsrcrecordid>eNqFkcGPEyEYxYlxE-uudxMvxEQ9zQofDAPH2caqSTfrYTfxNqHAtGymTAVq7Nl_XKZt9uBBLxDg995H3kPoNSXXlBL18b79dg2EyGmpeUOfoRmta1kBAH2OZoRQWSkQ31-glyk9liOXnM_Q74VOGbdBD4fkEx57vNRx7cpNdiFo3MaoDwk_JB_WOG8cnm901Ca76FP2Bt_oSbbYB5P9GPCty5vRYh3sEW6t3mX_s6jimBJud7s4_vJbfWTbYT1GnzfbK3TR6yG5V-f9Ej0sPt3Pv1TLu89f5-2yMlzSXImeg1tpQaxcMWGpo30vamEs1Bw4dbVharWCnlig0FhWcmgIU5Yr5iypNbtEH06-5Rc_9i7lbuuTccOggxv3qVOECWikqv9LSkkEVxxIId__k2ScMwYgCvj2L_Bx3MeSe5lLgTVN6aNA5ASZKa_o-m4XS1zx0FHSTTV3peZuqrk711wk786-Ohk99FEH49OTDohUDTlavzlx3jn39MyFrBUA-wMZBbAY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912377484</pqid></control><display><type>article</type><title>Fast Analysis of Large Antenna Arrays Using the Characteristic Basis Function Method and the Adaptive Cross Approximation Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Maaskant, R. ; Mittra, R. ; Tijhuis, A.</creator><creatorcontrib>Maaskant, R. ; Mittra, R. ; Tijhuis, A.</creatorcontrib><description>The characteristic basis function method (CBFM) has been hybridized with the adaptive cross approximation (ACA) algorithm to construct a reduced matrix equation in a time-efficient manner and to solve electrically large antenna array problems in-core, with a solve time orders of magnitude less than those in the conventional methods. Various numerical examples are presented that demonstrate that the proposed method has a very good accuracy, computational efficiency and reduced memory storage requirement. Specifically, we analyze large 1-D and 2-D arrays of electrically interconnected tapered slot antennas (TSAs). The entire computational domain is subdivided into many smaller subdomains, each of which supports a set of characteristic basis functions (CBFs). We also present a novel scheme for generating the CBFs that do not conform to the edge condition at the truncated edge of each subdomain, and provide a minor overlap between the CBFs in adjacent subdomains. As a result, the CBFs preserve the continuity of the surface current across the subdomain interfaces, thereby circumventing the need to use separate ldquoconnectionrdquo basis functions.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2008.2005471</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive algorithms ; Adaptive arrays ; Adaptive cross approximation (ACA) ; Algorithm design and analysis ; Algorithms ; Antenna arrays ; Antennas ; Applied sciences ; Approximation ; Approximation algorithms ; Basis functions ; characteristic basis function method (CBFM) ; Computational efficiency ; Diffraction ; Exact sciences and technology ; finite arrays ; integral equation techniques ; Integral equations ; Large-scale systems ; macro basis functions ; Mathematical analysis ; Mathematical models ; Phased arrays ; Radiocommunications ; Slot antennas ; Studies ; Telecommunications ; Telecommunications and information theory</subject><ispartof>IEEE transactions on antennas and propagation, 2008-11, Vol.56 (11), p.3440-3451</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-6f42eba60d8b36d1e1ff656cd254241e5c39bb2f0d2127d30057039d493ed05a3</citedby><cites>FETCH-LOGICAL-c481t-6f42eba60d8b36d1e1ff656cd254241e5c39bb2f0d2127d30057039d493ed05a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4685922$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4685922$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20897084$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Maaskant, R.</creatorcontrib><creatorcontrib>Mittra, R.</creatorcontrib><creatorcontrib>Tijhuis, A.</creatorcontrib><title>Fast Analysis of Large Antenna Arrays Using the Characteristic Basis Function Method and the Adaptive Cross Approximation Algorithm</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The characteristic basis function method (CBFM) has been hybridized with the adaptive cross approximation (ACA) algorithm to construct a reduced matrix equation in a time-efficient manner and to solve electrically large antenna array problems in-core, with a solve time orders of magnitude less than those in the conventional methods. Various numerical examples are presented that demonstrate that the proposed method has a very good accuracy, computational efficiency and reduced memory storage requirement. Specifically, we analyze large 1-D and 2-D arrays of electrically interconnected tapered slot antennas (TSAs). The entire computational domain is subdivided into many smaller subdomains, each of which supports a set of characteristic basis functions (CBFs). We also present a novel scheme for generating the CBFs that do not conform to the edge condition at the truncated edge of each subdomain, and provide a minor overlap between the CBFs in adjacent subdomains. As a result, the CBFs preserve the continuity of the surface current across the subdomain interfaces, thereby circumventing the need to use separate ldquoconnectionrdquo basis functions.</description><subject>Adaptive algorithms</subject><subject>Adaptive arrays</subject><subject>Adaptive cross approximation (ACA)</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>Basis functions</subject><subject>characteristic basis function method (CBFM)</subject><subject>Computational efficiency</subject><subject>Diffraction</subject><subject>Exact sciences and technology</subject><subject>finite arrays</subject><subject>integral equation techniques</subject><subject>Integral equations</subject><subject>Large-scale systems</subject><subject>macro basis functions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Phased arrays</subject><subject>Radiocommunications</subject><subject>Slot antennas</subject><subject>Studies</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkcGPEyEYxYlxE-uudxMvxEQ9zQofDAPH2caqSTfrYTfxNqHAtGymTAVq7Nl_XKZt9uBBLxDg995H3kPoNSXXlBL18b79dg2EyGmpeUOfoRmta1kBAH2OZoRQWSkQ31-glyk9liOXnM_Q74VOGbdBD4fkEx57vNRx7cpNdiFo3MaoDwk_JB_WOG8cnm901Ca76FP2Bt_oSbbYB5P9GPCty5vRYh3sEW6t3mX_s6jimBJud7s4_vJbfWTbYT1GnzfbK3TR6yG5V-f9Ej0sPt3Pv1TLu89f5-2yMlzSXImeg1tpQaxcMWGpo30vamEs1Bw4dbVharWCnlig0FhWcmgIU5Yr5iypNbtEH06-5Rc_9i7lbuuTccOggxv3qVOECWikqv9LSkkEVxxIId__k2ScMwYgCvj2L_Bx3MeSe5lLgTVN6aNA5ASZKa_o-m4XS1zx0FHSTTV3peZuqrk711wk786-Ohk99FEH49OTDohUDTlavzlx3jn39MyFrBUA-wMZBbAY</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Maaskant, R.</creator><creator>Mittra, R.</creator><creator>Tijhuis, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20081101</creationdate><title>Fast Analysis of Large Antenna Arrays Using the Characteristic Basis Function Method and the Adaptive Cross Approximation Algorithm</title><author>Maaskant, R. ; Mittra, R. ; Tijhuis, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-6f42eba60d8b36d1e1ff656cd254241e5c39bb2f0d2127d30057039d493ed05a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive arrays</topic><topic>Adaptive cross approximation (ACA)</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>Basis functions</topic><topic>characteristic basis function method (CBFM)</topic><topic>Computational efficiency</topic><topic>Diffraction</topic><topic>Exact sciences and technology</topic><topic>finite arrays</topic><topic>integral equation techniques</topic><topic>Integral equations</topic><topic>Large-scale systems</topic><topic>macro basis functions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Phased arrays</topic><topic>Radiocommunications</topic><topic>Slot antennas</topic><topic>Studies</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maaskant, R.</creatorcontrib><creatorcontrib>Mittra, R.</creatorcontrib><creatorcontrib>Tijhuis, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maaskant, R.</au><au>Mittra, R.</au><au>Tijhuis, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Analysis of Large Antenna Arrays Using the Characteristic Basis Function Method and the Adaptive Cross Approximation Algorithm</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>56</volume><issue>11</issue><spage>3440</spage><epage>3451</epage><pages>3440-3451</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The characteristic basis function method (CBFM) has been hybridized with the adaptive cross approximation (ACA) algorithm to construct a reduced matrix equation in a time-efficient manner and to solve electrically large antenna array problems in-core, with a solve time orders of magnitude less than those in the conventional methods. Various numerical examples are presented that demonstrate that the proposed method has a very good accuracy, computational efficiency and reduced memory storage requirement. Specifically, we analyze large 1-D and 2-D arrays of electrically interconnected tapered slot antennas (TSAs). The entire computational domain is subdivided into many smaller subdomains, each of which supports a set of characteristic basis functions (CBFs). We also present a novel scheme for generating the CBFs that do not conform to the edge condition at the truncated edge of each subdomain, and provide a minor overlap between the CBFs in adjacent subdomains. As a result, the CBFs preserve the continuity of the surface current across the subdomain interfaces, thereby circumventing the need to use separate ldquoconnectionrdquo basis functions.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2008.2005471</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2008-11, Vol.56 (11), p.3440-3451 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_pascalfrancis_primary_20897084 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive algorithms Adaptive arrays Adaptive cross approximation (ACA) Algorithm design and analysis Algorithms Antenna arrays Antennas Applied sciences Approximation Approximation algorithms Basis functions characteristic basis function method (CBFM) Computational efficiency Diffraction Exact sciences and technology finite arrays integral equation techniques Integral equations Large-scale systems macro basis functions Mathematical analysis Mathematical models Phased arrays Radiocommunications Slot antennas Studies Telecommunications Telecommunications and information theory |
title | Fast Analysis of Large Antenna Arrays Using the Characteristic Basis Function Method and the Adaptive Cross Approximation Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A14%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Analysis%20of%20Large%20Antenna%20Arrays%20Using%20the%20Characteristic%20Basis%20Function%20Method%20and%20the%20Adaptive%20Cross%20Approximation%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Maaskant,%20R.&rft.date=2008-11-01&rft.volume=56&rft.issue=11&rft.spage=3440&rft.epage=3451&rft.pages=3440-3451&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2008.2005471&rft_dat=%3Cproquest_RIE%3E2545526491%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912377484&rft_id=info:pmid/&rft_ieee_id=4685922&rfr_iscdi=true |