Two-Dimensional Array Coloring With Many Colors

Given an m times n array and k distinct colors with 2les m les n and 2les k < mn , we consider the problem of marking each location in the array using one of the k given colors such that any two locations in the array marked by the same color are separated as much as possible. This problem is rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2008-09, Vol.54 (9), p.4391-4394
Hauptverfasser: Wen-Qing Xu, Golomb, S.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4394
container_issue 9
container_start_page 4391
container_title IEEE transactions on information theory
container_volume 54
creator Wen-Qing Xu
Golomb, S.W.
description Given an m times n array and k distinct colors with 2les m les n and 2les k < mn , we consider the problem of marking each location in the array using one of the k given colors such that any two locations in the array marked by the same color are separated as much as possible. This problem is related to two-dimensional (2-D) interleaving schemes for correcting cluster errors where the goal is to rearrange the codeword symbols so that an arbitrarily shaped error cluster of size t can be corrected for the largest possible value of t . In a recent paper, the authors have shown that, for the case 2les k les mn /2, the maximum coloring distance is given by lfloorradic2 k rfloor if k leslceil m 2 /2rceil, and by m +lfloor( k -lceil m 2 /2rceil)/ m rfloor if lceil m 2 /2rceilles k les mn /2. In this work, we extend these results to the case mn /2< k < mn . We show that in such cases, the maximum coloring distance is given by to m +lfloor( k -lceil m 2 /2rceil)/ m rfloor if mn /2< k < mn -lfloor m 2 /2rfloor, and by m + n -lceilradic2( mn - k )rceil if mn -lfloor m 2 /2rfloorles k < mn . In particular, we generalize the partial sphere packing argument to derive the new bound and consequently propose a new type of construction achieving optimal coloring for the case k ges mn -lceil m 2 /2rceil.
doi_str_mv 10.1109/TIT.2008.928286
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_20615775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4609001</ieee_id><sourcerecordid>34711184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-d3318d0b4cbd0067405f51fe1384b127a9bfd60c2836c3ddb6f43146033518d73</originalsourceid><addsrcrecordid>eNp9kc1LAzEQxYMoWKtnD16KoJ62zeRjNzlK_SpUvKx4DNlsVlO2m5q0SP97U7b04MHTMDO_92DeIHQJeAyA5aSclWOCsRhLIojIj9AAOC8ymXN2jAYYg8gkY-IUncW4SC3jQAZoUv747MEtbRed73Q7ug9Bb0dT3_rgus_Rh1t_jV51tx_Fc3TS6Dbai30dovenx3L6ks3fnmfT-3lmKOXrrKYURI0rZqoa47xgmDccGgtUsApIoWXV1Dk2RNDc0Lqu8oZRYDlO6iQs6BDd9b6r4L83Nq7V0kVj21Z31m-ikiAlk8k5kbf_kpQVACBYAq__gAu_CenmqEBySXhR4ARNesgEH2OwjVoFt9RhqwCrXc4q5ax2Oas-56S42dvqaHTbBN0ZFw8ygnNIzjxxVz3nrLWHdTpZpmfQX_CogrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195925770</pqid></control><display><type>article</type><title>Two-Dimensional Array Coloring With Many Colors</title><source>IEEE Electronic Library (IEL)</source><creator>Wen-Qing Xu ; Golomb, S.W.</creator><creatorcontrib>Wen-Qing Xu ; Golomb, S.W.</creatorcontrib><description><![CDATA[Given an m times n array and k distinct colors with 2les m les n and 2les k < mn , we consider the problem of marking each location in the array using one of the k given colors such that any two locations in the array marked by the same color are separated as much as possible. This problem is related to two-dimensional (2-D) interleaving schemes for correcting cluster errors where the goal is to rearrange the codeword symbols so that an arbitrarily shaped error cluster of size t can be corrected for the largest possible value of t . In a recent paper, the authors have shown that, for the case 2les k les mn /2, the maximum coloring distance is given by lfloorradic2 k rfloor if k leslceil m 2 /2rceil, and by m +lfloor( k -lceil m 2 /2rceil)/ m rfloor if lceil m 2 /2rceilles k les mn /2. In this work, we extend these results to the case mn /2< k < mn . We show that in such cases, the maximum coloring distance is given by to m +lfloor( k -lceil m 2 /2rceil)/ m rfloor if mn /2< k < mn -lfloor m 2 /2rfloor, and by m + n -lceilradic2( mn - k )rceil if mn -lfloor m 2 /2rfloorles k < mn . In particular, we generalize the partial sphere packing argument to derive the new bound and consequently propose a new type of construction achieving optimal coloring for the case k ges mn -lceil m 2 /2rceil.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2008.928286</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Arrays ; Clusters ; Codes ; Coding, codes ; Coloring ; coloring distance ; cyclic shifting ; Error correction ; Error correction codes ; Errors ; Exact sciences and technology ; Information processing ; Information theory ; Information, signal and communications theory ; Interleaved codes ; interleaving ; Manganese ; Mathematics ; Optimization ; Position (location) ; Power engineering and energy ; random error-correcting codes ; Signal and communications theory ; sphere packing ; Statistics ; Telecommunications and information theory ; Two dimensional ; Two dimensional displays</subject><ispartof>IEEE transactions on information theory, 2008-09, Vol.54 (9), p.4391-4394</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-d3318d0b4cbd0067405f51fe1384b127a9bfd60c2836c3ddb6f43146033518d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4609001$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4609001$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20615775$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen-Qing Xu</creatorcontrib><creatorcontrib>Golomb, S.W.</creatorcontrib><title>Two-Dimensional Array Coloring With Many Colors</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[Given an m times n array and k distinct colors with 2les m les n and 2les k < mn , we consider the problem of marking each location in the array using one of the k given colors such that any two locations in the array marked by the same color are separated as much as possible. This problem is related to two-dimensional (2-D) interleaving schemes for correcting cluster errors where the goal is to rearrange the codeword symbols so that an arbitrarily shaped error cluster of size t can be corrected for the largest possible value of t . In a recent paper, the authors have shown that, for the case 2les k les mn /2, the maximum coloring distance is given by lfloorradic2 k rfloor if k leslceil m 2 /2rceil, and by m +lfloor( k -lceil m 2 /2rceil)/ m rfloor if lceil m 2 /2rceilles k les mn /2. In this work, we extend these results to the case mn /2< k < mn . We show that in such cases, the maximum coloring distance is given by to m +lfloor( k -lceil m 2 /2rceil)/ m rfloor if mn /2< k < mn -lfloor m 2 /2rfloor, and by m + n -lceilradic2( mn - k )rceil if mn -lfloor m 2 /2rfloorles k < mn . In particular, we generalize the partial sphere packing argument to derive the new bound and consequently propose a new type of construction achieving optimal coloring for the case k ges mn -lceil m 2 /2rceil.]]></description><subject>Applied sciences</subject><subject>Arrays</subject><subject>Clusters</subject><subject>Codes</subject><subject>Coding, codes</subject><subject>Coloring</subject><subject>coloring distance</subject><subject>cyclic shifting</subject><subject>Error correction</subject><subject>Error correction codes</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Information processing</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Interleaved codes</subject><subject>interleaving</subject><subject>Manganese</subject><subject>Mathematics</subject><subject>Optimization</subject><subject>Position (location)</subject><subject>Power engineering and energy</subject><subject>random error-correcting codes</subject><subject>Signal and communications theory</subject><subject>sphere packing</subject><subject>Statistics</subject><subject>Telecommunications and information theory</subject><subject>Two dimensional</subject><subject>Two dimensional displays</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1LAzEQxYMoWKtnD16KoJ62zeRjNzlK_SpUvKx4DNlsVlO2m5q0SP97U7b04MHTMDO_92DeIHQJeAyA5aSclWOCsRhLIojIj9AAOC8ymXN2jAYYg8gkY-IUncW4SC3jQAZoUv747MEtbRed73Q7ug9Bb0dT3_rgus_Rh1t_jV51tx_Fc3TS6Dbai30dovenx3L6ks3fnmfT-3lmKOXrrKYURI0rZqoa47xgmDccGgtUsApIoWXV1Dk2RNDc0Lqu8oZRYDlO6iQs6BDd9b6r4L83Nq7V0kVj21Z31m-ikiAlk8k5kbf_kpQVACBYAq__gAu_CenmqEBySXhR4ARNesgEH2OwjVoFt9RhqwCrXc4q5ax2Oas-56S42dvqaHTbBN0ZFw8ygnNIzjxxVz3nrLWHdTpZpmfQX_CogrA</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Wen-Qing Xu</creator><creator>Golomb, S.W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080901</creationdate><title>Two-Dimensional Array Coloring With Many Colors</title><author>Wen-Qing Xu ; Golomb, S.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-d3318d0b4cbd0067405f51fe1384b127a9bfd60c2836c3ddb6f43146033518d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Arrays</topic><topic>Clusters</topic><topic>Codes</topic><topic>Coding, codes</topic><topic>Coloring</topic><topic>coloring distance</topic><topic>cyclic shifting</topic><topic>Error correction</topic><topic>Error correction codes</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Information processing</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Interleaved codes</topic><topic>interleaving</topic><topic>Manganese</topic><topic>Mathematics</topic><topic>Optimization</topic><topic>Position (location)</topic><topic>Power engineering and energy</topic><topic>random error-correcting codes</topic><topic>Signal and communications theory</topic><topic>sphere packing</topic><topic>Statistics</topic><topic>Telecommunications and information theory</topic><topic>Two dimensional</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen-Qing Xu</creatorcontrib><creatorcontrib>Golomb, S.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wen-Qing Xu</au><au>Golomb, S.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional Array Coloring With Many Colors</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>54</volume><issue>9</issue><spage>4391</spage><epage>4394</epage><pages>4391-4394</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[Given an m times n array and k distinct colors with 2les m les n and 2les k < mn , we consider the problem of marking each location in the array using one of the k given colors such that any two locations in the array marked by the same color are separated as much as possible. This problem is related to two-dimensional (2-D) interleaving schemes for correcting cluster errors where the goal is to rearrange the codeword symbols so that an arbitrarily shaped error cluster of size t can be corrected for the largest possible value of t . In a recent paper, the authors have shown that, for the case 2les k les mn /2, the maximum coloring distance is given by lfloorradic2 k rfloor if k leslceil m 2 /2rceil, and by m +lfloor( k -lceil m 2 /2rceil)/ m rfloor if lceil m 2 /2rceilles k les mn /2. In this work, we extend these results to the case mn /2< k < mn . We show that in such cases, the maximum coloring distance is given by to m +lfloor( k -lceil m 2 /2rceil)/ m rfloor if mn /2< k < mn -lfloor m 2 /2rfloor, and by m + n -lceilradic2( mn - k )rceil if mn -lfloor m 2 /2rfloorles k < mn . In particular, we generalize the partial sphere packing argument to derive the new bound and consequently propose a new type of construction achieving optimal coloring for the case k ges mn -lceil m 2 /2rceil.]]></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2008.928286</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2008-09, Vol.54 (9), p.4391-4394
issn 0018-9448
1557-9654
language eng
recordid cdi_pascalfrancis_primary_20615775
source IEEE Electronic Library (IEL)
subjects Applied sciences
Arrays
Clusters
Codes
Coding, codes
Coloring
coloring distance
cyclic shifting
Error correction
Error correction codes
Errors
Exact sciences and technology
Information processing
Information theory
Information, signal and communications theory
Interleaved codes
interleaving
Manganese
Mathematics
Optimization
Position (location)
Power engineering and energy
random error-correcting codes
Signal and communications theory
sphere packing
Statistics
Telecommunications and information theory
Two dimensional
Two dimensional displays
title Two-Dimensional Array Coloring With Many Colors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T04%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20Array%20Coloring%20With%20Many%20Colors&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Wen-Qing%20Xu&rft.date=2008-09-01&rft.volume=54&rft.issue=9&rft.spage=4391&rft.epage=4394&rft.pages=4391-4394&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2008.928286&rft_dat=%3Cproquest_RIE%3E34711184%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195925770&rft_id=info:pmid/&rft_ieee_id=4609001&rfr_iscdi=true