Valuing the flexibility of flexible manufacturing systems with fast decision rules

We compare the use of stochastic dynamic programming (SDP), Neural Networks and a simple approximation rule for calculating the real option value of a flexible production system. While SDP yields the best solution to the problem, it is computationally prohibitive for larger settings. We test two app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Feurstein, Markus, Natter, Martin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue
container_start_page 153
container_title
container_volume
creator Feurstein, Markus
Natter, Martin
description We compare the use of stochastic dynamic programming (SDP), Neural Networks and a simple approximation rule for calculating the real option value of a flexible production system. While SDP yields the best solution to the problem, it is computationally prohibitive for larger settings. We test two approximations of the value function and show that the results are comparable to those obtained via SDP. These methods have the advantage of a high computational performance and of no restrictions on the type of process used. Our approach is not only useful for supporting large investment decisions, but it can also be applied in the case of routine decisions like the determination of the production program when stochastic profit margins occur.
doi_str_mv 10.1007/3-540-64574-8_401
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2044088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2044088</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1391-9170e55941bbb5b8d19f7d75efc6470c1fd5f6370b836c6c9a9d0c608ec597933</originalsourceid><addsrcrecordid>eNotkMtOwzAQRc1LopR-ADsv2IaO4_cSVbykSkgI2FqOY1NDmkRxIujfk7SdzWhmjkZXB6EbAncEQC5pxhlkgnHJMmUYkBO00FLRcSs05cBP0YwIQjJKmT5DV_vDRKtzNAMKeaYlo5dokdI3jEVzSXIxQ2-fthpi_YX7jceh8n-xiFXsd7gJx7HyeGvrIVjXD91Epl3q_Tbh39hvcLCpx6V3McWmxt1Q-XSNLoKtkl8c-xx9PD68r56z9evTy-p-nbWEapJpIsFzrhkpioIXqiQ6yFJyH5xgEhwJJQ-CSigUFU44bXUJToDyjmupKZ2j28Pf1iZnq9DZeoxh2i5ubbczOTAGSo3Y8oCldorvO1M0zU8yBMxk1lAzqjJ7V2Zvlv4D15NnJw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Valuing the flexibility of flexible manufacturing systems with fast decision rules</title><source>Springer Books</source><creator>Feurstein, Markus ; Natter, Martin</creator><contributor>Mira, José ; Ali, Moonis ; Pasqual del Pobil, Angel</contributor><creatorcontrib>Feurstein, Markus ; Natter, Martin ; Mira, José ; Ali, Moonis ; Pasqual del Pobil, Angel</creatorcontrib><description>We compare the use of stochastic dynamic programming (SDP), Neural Networks and a simple approximation rule for calculating the real option value of a flexible production system. While SDP yields the best solution to the problem, it is computationally prohibitive for larger settings. We test two approximations of the value function and show that the results are comparable to those obtained via SDP. These methods have the advantage of a high computational performance and of no restrictions on the type of process used. Our approach is not only useful for supporting large investment decisions, but it can also be applied in the case of routine decisions like the determination of the production program when stochastic profit margins occur.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540645748</identifier><identifier>ISBN: 9783540645740</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540693505</identifier><identifier>EISBN: 3540693505</identifier><identifier>DOI: 10.1007/3-540-64574-8_401</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Capital Budgeting ; Computer science; control theory; systems ; Control theory. Systems ; Dynamic Programming ; Exact sciences and technology ; Flexible Manufacturing Systems ; Neural Networks ; Process control. Computer integrated manufacturing ; Real Options ; Simulated Annealing</subject><ispartof>Lecture notes in computer science, 2005, p.153-162</ispartof><rights>Springer-Verlag Berlin Heidelberg 1998</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-64574-8_401$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-64574-8_401$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2044088$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Mira, José</contributor><contributor>Ali, Moonis</contributor><contributor>Pasqual del Pobil, Angel</contributor><creatorcontrib>Feurstein, Markus</creatorcontrib><creatorcontrib>Natter, Martin</creatorcontrib><title>Valuing the flexibility of flexible manufacturing systems with fast decision rules</title><title>Lecture notes in computer science</title><description>We compare the use of stochastic dynamic programming (SDP), Neural Networks and a simple approximation rule for calculating the real option value of a flexible production system. While SDP yields the best solution to the problem, it is computationally prohibitive for larger settings. We test two approximations of the value function and show that the results are comparable to those obtained via SDP. These methods have the advantage of a high computational performance and of no restrictions on the type of process used. Our approach is not only useful for supporting large investment decisions, but it can also be applied in the case of routine decisions like the determination of the production program when stochastic profit margins occur.</description><subject>Applied sciences</subject><subject>Capital Budgeting</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Dynamic Programming</subject><subject>Exact sciences and technology</subject><subject>Flexible Manufacturing Systems</subject><subject>Neural Networks</subject><subject>Process control. Computer integrated manufacturing</subject><subject>Real Options</subject><subject>Simulated Annealing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540645748</isbn><isbn>9783540645740</isbn><isbn>9783540693505</isbn><isbn>3540693505</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtOwzAQRc1LopR-ADsv2IaO4_cSVbykSkgI2FqOY1NDmkRxIujfk7SdzWhmjkZXB6EbAncEQC5pxhlkgnHJMmUYkBO00FLRcSs05cBP0YwIQjJKmT5DV_vDRKtzNAMKeaYlo5dokdI3jEVzSXIxQ2-fthpi_YX7jceh8n-xiFXsd7gJx7HyeGvrIVjXD91Epl3q_Tbh39hvcLCpx6V3McWmxt1Q-XSNLoKtkl8c-xx9PD68r56z9evTy-p-nbWEapJpIsFzrhkpioIXqiQ6yFJyH5xgEhwJJQ-CSigUFU44bXUJToDyjmupKZ2j28Pf1iZnq9DZeoxh2i5ubbczOTAGSo3Y8oCldorvO1M0zU8yBMxk1lAzqjJ7V2Zvlv4D15NnJw</recordid><startdate>20050729</startdate><enddate>20050729</enddate><creator>Feurstein, Markus</creator><creator>Natter, Martin</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>20050729</creationdate><title>Valuing the flexibility of flexible manufacturing systems with fast decision rules</title><author>Feurstein, Markus ; Natter, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1391-9170e55941bbb5b8d19f7d75efc6470c1fd5f6370b836c6c9a9d0c608ec597933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Capital Budgeting</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Dynamic Programming</topic><topic>Exact sciences and technology</topic><topic>Flexible Manufacturing Systems</topic><topic>Neural Networks</topic><topic>Process control. Computer integrated manufacturing</topic><topic>Real Options</topic><topic>Simulated Annealing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feurstein, Markus</creatorcontrib><creatorcontrib>Natter, Martin</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feurstein, Markus</au><au>Natter, Martin</au><au>Mira, José</au><au>Ali, Moonis</au><au>Pasqual del Pobil, Angel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Valuing the flexibility of flexible manufacturing systems with fast decision rules</atitle><btitle>Lecture notes in computer science</btitle><date>2005-07-29</date><risdate>2005</risdate><spage>153</spage><epage>162</epage><pages>153-162</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540645748</isbn><isbn>9783540645740</isbn><eisbn>9783540693505</eisbn><eisbn>3540693505</eisbn><abstract>We compare the use of stochastic dynamic programming (SDP), Neural Networks and a simple approximation rule for calculating the real option value of a flexible production system. While SDP yields the best solution to the problem, it is computationally prohibitive for larger settings. We test two approximations of the value function and show that the results are comparable to those obtained via SDP. These methods have the advantage of a high computational performance and of no restrictions on the type of process used. Our approach is not only useful for supporting large investment decisions, but it can also be applied in the case of routine decisions like the determination of the production program when stochastic profit margins occur.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/3-540-64574-8_401</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, p.153-162
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_2044088
source Springer Books
subjects Applied sciences
Capital Budgeting
Computer science
control theory
systems
Control theory. Systems
Dynamic Programming
Exact sciences and technology
Flexible Manufacturing Systems
Neural Networks
Process control. Computer integrated manufacturing
Real Options
Simulated Annealing
title Valuing the flexibility of flexible manufacturing systems with fast decision rules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A20%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Valuing%20the%20flexibility%20of%20flexible%20manufacturing%20systems%20with%20fast%20decision%20rules&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Feurstein,%20Markus&rft.date=2005-07-29&rft.spage=153&rft.epage=162&rft.pages=153-162&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540645748&rft.isbn_list=9783540645740&rft_id=info:doi/10.1007/3-540-64574-8_401&rft_dat=%3Cpascalfrancis_sprin%3E2044088%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540693505&rft.eisbn_list=3540693505&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true