Genetic algorithms: Minimal conditions for convergence

This paper is concerning the finite, homogenous Markov chain modeling of the binary, elitist genetic algorithm (EGA) and provides a set of minimal sufficient conditions for convergence to the global optimum. The case of a GA where each population would be allow to mutate only a small number of bits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Agapie, Alexandru
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue
container_start_page 181
container_title
container_volume
creator Agapie, Alexandru
description This paper is concerning the finite, homogenous Markov chain modeling of the binary, elitist genetic algorithm (EGA) and provides a set of minimal sufficient conditions for convergence to the global optimum. The case of a GA where each population would be allow to mutate only a small number of bits has not been covered yet by the GA's literature, although it commonly appears in practice. The main result presented here shows that the condition of the one-step transition probability by mutation between two arbitrary strings being larger than zero can be relaxed in the sense that it is also sufficient to achieve the transition by a chain of small mutations. Consequently, even one-bit mutations would be sufficient to make the GA globally convergent, because they can be chained to achieve a multi-bit mutation. All this study is performed with respect to the theory of non-negative matrices and their relationship to Markov chains.
doi_str_mv 10.1007/BFb0026600
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_2039905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2039905</sourcerecordid><originalsourceid>FETCH-LOGICAL-p217t-9f24a3a8528dcb03e820876eb7a52403ed70b0f25860c02a19c17da87f55c4293</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc1LIpRu-IIsWLAJjN82O6hoQSpiA-vIcZxgSJ3KjpD4e1y1ErMZXZ2j0egidIXhFgPIu8dlA0CEADhCF5QzEFpopY9RgQXGFaVMnxwAw5mdogIokEpLRs_RPKUvyEMJzkKBxMoFN3lbmqEfo58-N-m-fPXBb8xQ2jG0fvJjSGU3xl38cbF3wbpLdNaZIbn5Yc_Qx_LpffFcrd9WL4uHdbUlWE6V7ggz1ChOVGsboE4RUFK4RhpOWM6thAY6wpUAC8RgbbFsjZId55YRTWfoen93a5I1QxdNsD7V25j_i781Aao18Kzd7LWUSehdrJtx_E41hnrXWf3fGf0DrkRYHQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Genetic algorithms: Minimal conditions for convergence</title><source>Springer Books</source><creator>Agapie, Alexandru</creator><contributor>Snyers, Dominique ; Hao, Jin-Kao ; Lutton, Evelyne ; Ronald, Edmund ; Schoenauer, Marc</contributor><creatorcontrib>Agapie, Alexandru ; Snyers, Dominique ; Hao, Jin-Kao ; Lutton, Evelyne ; Ronald, Edmund ; Schoenauer, Marc</creatorcontrib><description>This paper is concerning the finite, homogenous Markov chain modeling of the binary, elitist genetic algorithm (EGA) and provides a set of minimal sufficient conditions for convergence to the global optimum. The case of a GA where each population would be allow to mutate only a small number of bits has not been covered yet by the GA's literature, although it commonly appears in practice. The main result presented here shows that the condition of the one-step transition probability by mutation between two arbitrary strings being larger than zero can be relaxed in the sense that it is also sufficient to achieve the transition by a chain of small mutations. Consequently, even one-bit mutations would be sufficient to make the GA globally convergent, because they can be chained to achieve a multi-bit mutation. All this study is performed with respect to the theory of non-negative matrices and their relationship to Markov chains.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540641696</identifier><identifier>ISBN: 9783540641698</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540696989</identifier><identifier>EISBN: 9783540696988</identifier><identifier>DOI: 10.1007/BFb0026600</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Ergodic Theorem ; Exact sciences and technology ; Genetic Algorithm ; Learning and adaptive systems ; Markov Chain ; Markov Chain Modeling ; Transition Matrix</subject><ispartof>Artificial Evolution, 1998, p.181-193</ispartof><rights>Springer-Verlag Berlin Heidelberg 1998</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0026600$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0026600$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2039905$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Snyers, Dominique</contributor><contributor>Hao, Jin-Kao</contributor><contributor>Lutton, Evelyne</contributor><contributor>Ronald, Edmund</contributor><contributor>Schoenauer, Marc</contributor><creatorcontrib>Agapie, Alexandru</creatorcontrib><title>Genetic algorithms: Minimal conditions for convergence</title><title>Artificial Evolution</title><description>This paper is concerning the finite, homogenous Markov chain modeling of the binary, elitist genetic algorithm (EGA) and provides a set of minimal sufficient conditions for convergence to the global optimum. The case of a GA where each population would be allow to mutate only a small number of bits has not been covered yet by the GA's literature, although it commonly appears in practice. The main result presented here shows that the condition of the one-step transition probability by mutation between two arbitrary strings being larger than zero can be relaxed in the sense that it is also sufficient to achieve the transition by a chain of small mutations. Consequently, even one-bit mutations would be sufficient to make the GA globally convergent, because they can be chained to achieve a multi-bit mutation. All this study is performed with respect to the theory of non-negative matrices and their relationship to Markov chains.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Ergodic Theorem</subject><subject>Exact sciences and technology</subject><subject>Genetic Algorithm</subject><subject>Learning and adaptive systems</subject><subject>Markov Chain</subject><subject>Markov Chain Modeling</subject><subject>Transition Matrix</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540641696</isbn><isbn>9783540641698</isbn><isbn>3540696989</isbn><isbn>9783540696988</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkMtOwzAQRc1LIpRu-IIsWLAJjN82O6hoQSpiA-vIcZxgSJ3KjpD4e1y1ErMZXZ2j0egidIXhFgPIu8dlA0CEADhCF5QzEFpopY9RgQXGFaVMnxwAw5mdogIokEpLRs_RPKUvyEMJzkKBxMoFN3lbmqEfo58-N-m-fPXBb8xQ2jG0fvJjSGU3xl38cbF3wbpLdNaZIbn5Yc_Qx_LpffFcrd9WL4uHdbUlWE6V7ggz1ChOVGsboE4RUFK4RhpOWM6thAY6wpUAC8RgbbFsjZId55YRTWfoen93a5I1QxdNsD7V25j_i781Aao18Kzd7LWUSehdrJtx_E41hnrXWf3fGf0DrkRYHQ</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Agapie, Alexandru</creator><general>Springer Berlin Heidelberg</general><general>Springer-Verlag</general><scope>IQODW</scope></search><sort><creationdate>19980101</creationdate><title>Genetic algorithms: Minimal conditions for convergence</title><author>Agapie, Alexandru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p217t-9f24a3a8528dcb03e820876eb7a52403ed70b0f25860c02a19c17da87f55c4293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Ergodic Theorem</topic><topic>Exact sciences and technology</topic><topic>Genetic Algorithm</topic><topic>Learning and adaptive systems</topic><topic>Markov Chain</topic><topic>Markov Chain Modeling</topic><topic>Transition Matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agapie, Alexandru</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agapie, Alexandru</au><au>Snyers, Dominique</au><au>Hao, Jin-Kao</au><au>Lutton, Evelyne</au><au>Ronald, Edmund</au><au>Schoenauer, Marc</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Genetic algorithms: Minimal conditions for convergence</atitle><btitle>Artificial Evolution</btitle><date>1998-01-01</date><risdate>1998</risdate><spage>181</spage><epage>193</epage><pages>181-193</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540641696</isbn><isbn>9783540641698</isbn><eisbn>3540696989</eisbn><eisbn>9783540696988</eisbn><abstract>This paper is concerning the finite, homogenous Markov chain modeling of the binary, elitist genetic algorithm (EGA) and provides a set of minimal sufficient conditions for convergence to the global optimum. The case of a GA where each population would be allow to mutate only a small number of bits has not been covered yet by the GA's literature, although it commonly appears in practice. The main result presented here shows that the condition of the one-step transition probability by mutation between two arbitrary strings being larger than zero can be relaxed in the sense that it is also sufficient to achieve the transition by a chain of small mutations. Consequently, even one-bit mutations would be sufficient to make the GA globally convergent, because they can be chained to achieve a multi-bit mutation. All this study is performed with respect to the theory of non-negative matrices and their relationship to Markov chains.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0026600</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Artificial Evolution, 1998, p.181-193
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_2039905
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Ergodic Theorem
Exact sciences and technology
Genetic Algorithm
Learning and adaptive systems
Markov Chain
Markov Chain Modeling
Transition Matrix
title Genetic algorithms: Minimal conditions for convergence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Genetic%20algorithms:%20Minimal%20conditions%20for%20convergence&rft.btitle=Artificial%20Evolution&rft.au=Agapie,%20Alexandru&rft.date=1998-01-01&rft.spage=181&rft.epage=193&rft.pages=181-193&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540641696&rft.isbn_list=9783540641698&rft_id=info:doi/10.1007/BFb0026600&rft_dat=%3Cpascalfrancis_sprin%3E2039905%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540696989&rft.eisbn_list=9783540696988&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true